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Chapter 1

(Semi-)stable vector bundles

Introduction
Let 𝑋 be an irreducible smooth projective curve over an algebraically closed commutative
field 𝑘 .

We say that a vector bundle 𝐸 on 𝑋 is semi-stable (resp. stable) if for every proper
vector subbundle 𝐹 of 𝐸 we have

deg(𝐹)/rk(𝐹) ≤ deg(𝐸)/rk(𝐸) (resp. < ) .

(Semi-)stable bundles are interesting because of the fact that for given integers 𝑟, 𝑑,
with 𝑟 ≥ 2, there exists an algebraic variety 𝑈𝑠 (𝑟, 𝑑) where the set of closed points is the
set 𝑆′(𝑟, 𝑑) of isomorphism classes of stable vector bundles of rank 𝑟 and degree 𝑑. The
closed points of a natural completion 𝑈 (𝑟, 𝑑) of this variety can be seen as equivalence
classes of semi-stable bundles. The varieties above are defined up to isomorphism by
universal properties. If 𝑟 and 𝑑 are coprime, every semi-stable vector bundle is stable, and
in that case there exists a “Poincaré bundle” over𝑈 (𝑟, 𝑑)×𝑋 , that is a vector bundle𝑉 such
that for every closed point 𝑧 of𝑈 (𝑟, 𝑑), the vector bundle 𝑉 over 𝑋 is in the isomorphism
class 𝑧 (an element of 𝑆′(𝑟, 𝑑)).

Another justification of the above definitions: for every family F of vector bundles
over 𝑋 parametrized by a Noetherian 𝑘-scheme 𝑇 , the set of points 𝑡 of 𝑇 such that F𝑡 is
(semi-)stable is open in 𝑇 .

In order to define an algebraic variety where the set of closed points is 𝑆′(𝑟, 𝑑), we
first construct a family F of vector bundles of rank 𝑟 and degree 𝑑 “containing” all the
semi-stable bundles of rank 𝑟 and degree 𝑑, parametrized by a Noetherian 𝑘-scheme 𝑅.
For this we use the Grothendieck schemes (or “Quot schemes”). In fact, 𝑅 is an open
subset of

𝑄 = Quot𝑃O⊗𝑘 𝑝/𝑋/𝑘
(𝑃 being the Hilbert polynomial of a rank 𝑟 vector bundle of degree 𝑑 and given the choice
of an ample line bundle over 𝑋).

The reductive group PGL(𝑝) acts on 𝑅, and the quotient 𝑅/PGL(𝑝), as a set, is the
set of isomorphism classes of vector bundles of the family F.

We are thus reduced to “quotient” 𝑅 by PGL(𝑝). This can only be done on an open
subset of 𝑅, formed by the so-called “semi-stable” points for the action of PGL(𝑝). We
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6 CHAPTER 1. (SEMI-)STABLE VECTOR BUNDLES

can show that a point 𝑞 of 𝑅 is (semi-)stable if and only if F𝑞 is, which justifies the
definitions above.

Unfortunately the study of the action of PGL(𝑝) on 𝑄 is difficult, and we are led to
use a better known variety 𝑌 over which SL(𝑝) acts, with an SL(𝑝)-morphism

𝜏 : 𝑅 −→ 𝑌 .

We can then compare the points 𝑞 of 𝑅 such that F𝑞 is (semi-)stable, and the
(semi-)stable points of 𝑌 of the action of SL(𝑝): one finds that the latter are the im-
ages by 𝜏 of the former, and that 𝜏 is injective. We can deduce the construction of
the desired varieties. We call the variety 𝑈 (𝑟, 𝑑) (resp. 𝑈𝑠 (𝑟, 𝑑)) the moduli variety of
semi-stable (resp. stable) bundles of rank 𝑟 and degree 𝑑.

On Section I, we give the main definitions and elementary properties of (semi-)stable
vector bundles.

On Section II, we specify the required properties of a moduli variety of (semi-)stable
vector bundles.

On Section III [REF], we carry out the construction of the moduli varieties. Results
from Mumford’s Theory are stated without proof.

On Section IV [REF], we treat the case where 𝑘 is the field of complex numbers.
We can then stablish a relation between semi-stable vector bundles over 𝑋 and unitary
representations of the fundamental group of 𝑋 .

On section 5 [REF], we determine the singular points of the moduli varieties.
On section 6 [REF] we give some results without proof, concerning: the Picard variety

of the moduli varieties, the existence of Poincaré bundles, the rationality of the moduli
varieties and their topological properties in the case where 𝑘 is the field of complex
numbers.

I Stable bundles, semi-stable bundles. Some properties
Definition 1. A vector bundle 𝐸 on 𝑋 is semi-stable (resp. stable) if for every proper
subbundle 𝐹 of 𝐸 , we have:

𝜇(𝐹) ≤ 𝜇(𝐸) (resp. 𝜇(𝐹) < 𝜇(𝐸) ) .

Equivalent definitions: the bundle 𝐸 is semi-stable (resp. stable) if and only if one of the
following three properties is verified:

(i) For every proper quotient bundle 𝐹 of 𝐸 , we have

𝜇(𝐹) ≥ 𝜇(𝐸) (resp. 𝜇(𝐹) > 𝜇(𝐸) ) .

(ii) For every proper subsheaf 𝐹 of 𝐸 , we have

𝜇(𝐹) ≤ 𝜇(𝐸) (resp. 𝜇(𝐹) < 𝜇(𝐸) ) .

(iii) For every proper quotient sheaf 𝐹 of 𝐸 , we have

𝜇(𝐹) ≥ 𝜇(𝐸) (resp. 𝜇(𝐹) > 𝜇(𝐸) ) .
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Remarks:

• Every line bundle on 𝑋 is stable.

• If rk(𝐸) and deg(𝐸) are coprime, the bundle 𝐸 is semi-stable if and only if it is
stable.

• The bundle 𝐸 is semi-stable (resp. stable) if and only if its dual is.

• Let 𝐿 be a line bundle on 𝑋 . Then 𝐸 is semi-stable (resp. stable) if and only if
𝐸 ⊗ 𝐿 is.

Let 𝑟 and 𝑑 be two integers such that 𝑟 ≥ 2. We denote 𝑆(𝑟, 𝑑) the set of isomorphism
classes of semi-stable bundles on 𝑋 , of rank 𝑟 and degree 𝑑. We denote 𝑆′(𝑟, 𝑑) the subset
of 𝑆(𝑟, 𝑑) consisting on isomorphism classes of stable bundles.

According to the above, for every integer 𝑘 , the choice of a line bundle of degree 𝑘
allows us to define a bĳection

𝑆(𝑟, 𝑑) −→ 𝑆(𝑟, 𝑑 + 𝑘𝑟)

inducing a bĳection 𝑆′(𝑟, 𝑑) → 𝑆′(𝑟, 𝑑 + 𝑘𝑟).
On the other hand, if 𝑟 and 𝑑 are coprime, we have

𝑆(𝑟, 𝑑) = 𝑆′(𝑟, 𝑑).

A The Harder–Narasimhan filtration
This is a first justification of the definitions above. Let 𝐸 be a vector bundle on 𝑋 .

Proposition 2. There exists a unique subbundle 𝐸1 of 𝐸 such that for every subbundle 𝐹
of 𝐸 , we have

𝜇(𝐹) ≤ 𝜇(𝐸1)
and rk(𝐹) ≤ rk(𝐸1) if 𝜇(𝐹) = 𝜇(𝐸1).

This subbundle is semistable and it is called the maximal semi-stable subbundle of 𝐸 .

Lemma 3. There exists an integer 𝑛0 such that for every subbundle 𝐹 of 𝐸 , we have

𝜇(𝐹) ≤ 𝑛0.

Let O(1) a very ample bundle on 𝑋 . Then there exists an integer 𝑝 such that for every
integer 𝑛 greater than 𝑝, we have:

Hom(O(𝑛), 𝐸) = {0} .

On the other hand, since a line bundle of degree greater than 𝑔 has nonzero global
sections, for every line bundle 𝐿 on 𝑋 of degree greater that 𝑝 deg(O(1)) + 𝑔, we have

Hom(O(𝑝), 𝐿) ≠ {0} ,

and thus Hom(𝐿, 𝐸) = {0}.
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Applying the above to the bundles ∧𝑟𝐸 , with 1 ≤ 𝑟 ≤ rk(𝐸) − 1 it is easy to achieve
the proof of Lemma 3.

The existence of a subbundle 𝐸1 of 𝐸 satisfying the conditions of Proposition 2 follows.
It is immediate that 𝐸1 is semistable. It remains to prove its uniqueness. Suppose that 𝐸′

1
verifies the same properties that 𝐸1, and that 𝐸′

1 ≠ 𝐸1.
Let 𝜋 : 𝐸 → 𝐸/𝐸′

1 the projection. We have 𝜋(𝐸1) ≠ 0. Let 𝐺 the subbundle of 𝐸/𝐸′
1

generated by 𝜋(𝐸1). Then, since 𝐸1 semi-stable, we have 𝜇(𝐺) ≥ 𝜇(𝐸1).
We have an exact sequence of vector bundles on 𝑋:

0 𝐸′
1 𝜋−1(𝐺) 𝐺 0.

After the properties of 𝐸′
1, we have:

𝜇(𝜋−1(𝐺)) < 𝜇(𝐸′
1), since rk(𝜋−1(𝐺)) > rk(𝐸′

1)

that is
deg(𝐺) + deg(𝐸′

1)
rk(𝐺) + rk(𝐸′

1)
<

deg(𝐸′
1)

rk(𝐸′
1)
,

from where we get
𝜇(𝐺) < 𝜇(𝐸′

1) = 𝜇(𝐸1),

which is absurd. This proves the uniqueness of 𝐸1 and completes the proof of Propo-
sition 2.

We immediately deduce the

Theorem 4 (Harder–Narasimhan). There exists a unique filtration of 𝐸 by vector subbun-
dles,

{0} = 𝐸0 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ · · · ⊂ 𝐸𝑠−1 ⊂ 𝐸𝑠 = 𝐸,

such that for 1 ≤ 𝑖 ≤ 𝑠 − 1, 𝐸𝑖/𝐸𝑖−1 is the maximal semi-stable subbundle of 𝐸/𝐸𝑖−1. We
call it the Harder–Narasimhan filtration of 𝐸 .

We can now deduce the classification of indecomposable and not semi-stable vector
bundles of rank 2 on 𝑋 . Let 𝑍0 be the set of isomorphism classes of such bundles. Using
Proposition [REF] from Appendix II [REF] and the above theorem, we can prove the

Corollary 5. Let 𝑓 : 𝑍0 → 𝐽 × 𝐽 the mapping defined by 𝑓 (𝐸) = (det(𝐸), 𝐿), 𝐿 being
the maximal semi-stable subbundle of 𝐸 . The image of 𝑓 consists on pairs (𝐿1, 𝐿2 of line
bundles such that

(i) 2 deg(𝐿1) > deg(𝐿2)

(ii) ℎ1(𝑋, 𝐿2
2 ⊗ 𝐿−1

1 ) ≠ 0.

Moreover, the fibre of 𝑓 over a point (𝐿1, 𝐿2) in its image can be identified with the
projective space

P(𝐻1(𝑋, 𝐿2
2 ⊗ 𝐿−1

1 )).



I. STABLE BUNDLES, SEMI-STABLE BUNDLES. SOME PROPERTIES 9

B Morphisms of (semi-)stable bundles. Jordan–Hölder theorem
Proposition 6. Let 𝐸 and 𝐹 be semi-stable bundles on 𝑋 . Then

a) If 𝜇(𝐹) < 𝜇(𝐸), we have Hom(𝐸, 𝐹) = {0}.

b) If 𝐸 and 𝐹 are stable, and 𝜇(𝐹) = 𝜇(𝐸), we have Hom(𝐸, 𝐹) = {0} or 𝐸 � 𝐹.

c) If 𝐸 is stable, 𝐸 is simple, that means that their only endomorphisms are homotheties.

a) Let 𝑓 : 𝐸 → 𝐹 a nonzero morphism. Then we have

𝜇(im( 𝑓 )) ≤ 𝜇(𝐹) < 𝜇(𝐸)

since 𝐹 is semi-stable. Thus ker( 𝑓 ) ≠ {0} and 𝜇(ker( 𝑓 )) > 𝜇(𝐸), which contradicts the
semi-stability of 𝐸 .

This proves a).

b) With the same notations that a), we have everywhere the big inequalities, and since
𝑓 is nonzero and 𝐸 is stable, we have ker( 𝑓 ) = {0} and im( 𝑓 ) is isomorphic to 𝐸 . Since
𝜇(𝐸) = 𝜇(𝐹) and 𝐹 is stable, we have im( 𝑓 ) = 𝐹, and 𝑓 is an isomorphism.

This proves b).

c) Let 𝑓 : 𝐸 → 𝐸 be a nonzero morphism. Like in b, we show that it is an isomorphism.
Let 𝑥 a point of 𝑋 . If 𝜆 is an eigenvalue of 𝑓𝑥 , 𝑓 − 𝜆𝐼𝑋 is not an isomorphism, and thus
𝑓 − 𝜆𝐼𝑋 = 0, and 𝑓 is a homothety.

This proves c and concludes the proof of Proposition 6.

Corollary 7. Let 𝐸1 and 𝐸2 semi-stable vector bundles on 𝑋 such that 𝜇(𝐸1) = 𝜇(𝐸2) = 𝜇,
and 𝐸 an extension of 𝐸2 by 𝐸1. Then 𝐸 is semi-stable.

We have an exact sequence

0 𝐸1 𝐸 𝐸2 0,

thus 𝜇(𝐸) = 𝜇. We are going to show that 𝐸 is semi-stable.
Let 𝐹 be a proper subbundle of 𝐸 , 𝐹′ its maximal semi-stable subbundle. Let us

suppose that 𝜇(𝐹) > 𝜇, so 𝜇(𝐹′) > 𝜇, and after part a on the Proposition above, we have
Hom(𝐹′, 𝐸2) = {0}, from where we deduce that 𝐹′ is a subbundle of 𝐸1. But this is
absurd since 𝐸1 is semistable.

This proves Corollary 7.

Let 𝜇 be a rational number, and 𝐶𝜇 the categorie whose objects are semi-stable vector
bundles 𝐸 on 𝑋 with 𝜇(𝐸) = 𝜇, and the morphisms of vector bundles between these
bundles.

After Corollary 7, we can define in an obvious way the direct sum of two objects (or
two morphisms) of the category 𝐶𝜇.
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Proposition 8. Let 𝐸 and 𝐹 be semi-stable vector bundles on 𝑋 so that 𝜇(𝐸) = 𝜇(𝐹),
and 𝑓 : 𝐸 → 𝐹 a vector bundle morphism.

Then 𝑓 has constant rank, ker( 𝑓 ) and coker( 𝑓 ) are semi-stable vector bundles and

𝜇(ker( 𝑓 )) = 𝜇(coker( 𝑓 )) = 𝜇(𝐸).
The morphism 𝑓 has constant rank if and only if coker( 𝑓 ) is torsion free. Let 𝑇 be the

torsion subsheaf of coker( 𝑓 ) and
𝐹′ = ker(𝐹 → coker( 𝑓 )/𝑇).

Since 𝐸 is semi-stable, we have 𝜇(im( 𝑓 )) ≥ 𝜇(𝐸), and since 𝐹 is also semi-stable,
𝜇(𝐹′) ≤ 𝜇(𝐹). Thus 𝐹′ = im( 𝑓 ) and 𝜇(im( 𝑓 )) = 𝜇(𝐸). We immediately deduce

𝜇(𝐸) = 𝜇(ker( 𝑓 )) = 𝜇(coker( 𝑓 )).
This concludes the proof of Proposition 8.

From the above we get
Proposition 9. The category 𝐶𝜇 is Abelian, Artinian and Noetherian.

We can thus apply the Jordan–Hölder theorem to 𝐶𝜇, which gives
Theorem 10. Let 𝐸 be a semi-stable vector bundle on 𝑋 . There exists a filtration of 𝐸 by
vector subbundles

0 = 𝐸𝑝+1 ⊂ 𝐸𝑝 ⊂ · · · ⊂ 𝐸1 ⊂ 𝐸0 = 𝐸

such that for 0 ≤ 𝑖 ≤ 𝑝, 𝐸𝑖/𝐸𝑖+1 is stable and 𝜇(𝐸𝑖/𝐸𝑖+1) = 𝜇(𝐸).
Moreover, the isomorphism class of the bundle

∑𝑝
𝑖=0 𝐸𝑖/𝐸𝑖+1 depends only on that of

𝐸 . We denote this isomorphism class by Gr(𝐸).
The following proposition is related with Proposition 32 [REF].

Proposition 11. Let 𝐸 be an object of 𝐶𝜇. The bundle 𝐸 is stable if and only if for every
object 𝐸′ of 𝐶𝜇 such that Gr(𝐸′) = Gr(𝐸), we have 𝐸 � 𝐸′.

We suppose that 𝐸 is not stable, and verify the hypotheses of the Proposition. We can
write Gr(𝐸) = 𝐹1 ⊕ 𝐹2, 𝐹1 being stable and 𝐹2 a direct sum of stable bundles. We easily
deduce from part b of Proposition 6 that every exact sequence

0 𝐹1 𝐹1 ⊕ 𝐹2 𝐹2 0

(resp. 0 𝐹2 𝐹1 ⊕ 𝐹2 𝐹1 0)

is split. Thus it suffices to show that ℎ1(𝑋, 𝐹∗
2 ⊗ 𝐹1) ≠ 0 or ℎ1(𝑋, 𝐹∗

1 ⊗ 𝐹2) ≠ 0. Again
from part b of Proposition 6, we have

ℎ0(𝑋, 𝐹∗
1 ⊗ 𝐹2) = ℎ0(𝑋, 𝐹∗

2 ⊗ 𝐹1).
We deduce with the theorem of Riemann–Roch, that

ℎ1(𝑋, 𝐹∗
2 ⊗ 𝐹1) − ℎ1(𝑋, 𝐹∗

1 ⊗ 𝐹2) = 2(rk(𝐹1) − rk(𝐹2))𝜇.
If this term is nonzero, one of the integers ℎ1(𝑋, 𝐹∗

2 ⊗ 𝐹1) and ℎ1(𝑋, 𝐹∗
1 ⊗ 𝐹2) is nonzero.

If it is zero,
𝜒(𝑋, 𝐹∗

2 ⊗ 𝐹1) = rk(𝐹1) rk(𝐹2)(1 − 𝑔) < 0,
and thus ℎ1(𝑋, 𝐹∗

2 ⊗ 𝐹1) is nonzero.
This concludes the proof of Proposition 11.
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II Fine moduli spaces — Coarse moduli spaces
In this section, we pose the problem of the classification of (semi-)stable bundles.

Let 𝑍 be a set of isomorphism classes on 𝑋 , which we will suppose all of the same
rank.

Definition 12. A family of elements of 𝑍 parametrized by a Noetherian 𝑘-scheme 𝑌 is a
locally free sheaf F over 𝑌 ×𝑘 𝑋 such that for every closed point 𝑦 of 𝑌 , the isomorphism
class of F𝑦 is an element of 𝑍 .

Two families F1 and F2 of elements of 𝑍 parametrized by 𝑌 are said isomorphic if
there exists an invertible sheaf 𝐿 on 𝑌 such that

F2 = F1 ⊗ 𝑝∗𝑌 (𝐿),

𝑝𝑌 denoting the projection 𝑋 ×𝑘 𝑌 → 𝑌 . In this case we write F1 ∼ F2.

Definition 13. A fine moduli space for 𝑍 is given by a Noetherian 𝑘-scheme 𝑌0 and a
family F0 of elements of 𝑍 parametrized by 𝑌0 such that for every family F of elements
of 𝑍 parametrized by a finite type 𝑘-scheme 𝑌 , there exists a unique morphism

𝜌F : 𝑌 → 𝑌0

such that
𝜌∗F (F0) ∼ F.

Remark: Functorial interpretation
Let

𝐹 : 𝑘-Sch −→ Set

be the functor associating to 𝑌 the set of isomorphism classes of families of elements of
𝑍 parametrized by 𝑌 . Then a fine moduli space for 𝑍 is simply the given by a Noetherian
𝑘-scheme representing 𝐹. Let 𝜌 : 𝑍 → 𝑌0(𝑘) the map associating to every element 𝑧 of
𝑍 , represented by a bundle 𝐸 over 𝑋 = 𝑋 × {pt} the element 𝜌𝐸 (pt) of 𝑌0(𝑘). Then we
easily see that 𝜌 is a bĳection. On the other hand it is also immediate that (𝑌0,F0) is
unique up to isomorphism. We call F0 a Poincaré bundle

Definition 14. A coarse moduli space for 𝑍 is a morphism of functors 𝑘-Sch → Set

Ψ : 𝐹 −→ Mor(−, 𝑌0),

𝑌0 being a Noetherian 𝑘-scheme satisfying the following conditions:

(i) Ψ(∗) : 𝐹 (∗) → 𝑌0(𝑘) is a bĳection (where ∗ = Spec(𝑘), so 𝐹 (∗) = 𝑍).

(ii) For every morphism of functors Ψ1 : 𝐹 → Mor(−, 𝑌0), 𝑌1 being a Noetherian
𝑘-scheme, there exists a unique morphism 𝑓 : 𝑌0 → 𝑌1 such that the following
diagram is commutative:
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Mor(−, 𝑌0)

𝐹

Mor(−, 𝑌1).

Mor(−, 𝑓 )

Ψ

Ψ1

A fine moduli space for 𝑍 defines in an obvious way a coarse moduli space for 𝑍 .
It is immediate that a coarse moduli space for 𝑍 is unique (up to isomorphism).
In what follows, we will admit the following result: for every pair of integers (𝑟, 𝑑)

such that 𝑟 ≥ 2, the set 𝑆′(𝑟, 𝑑) of isomorphism classes of stable vector bundles on 𝑋 of
rank 𝑟 and degree 𝑑 is nonempty. This will be proven in Section III [REF] [IT SAYS ON
THE THIRD PART?].

Recall that 𝑆(𝑟, 𝑑) denotes the set of isomorphism classes of semi-stable bundles on
𝑋 , of rank 𝑟 and degree 𝑑. We then have
Proposition 15. There does not exist a coarse moduli space for 𝑆(𝑟, 𝑑), if 𝑟 and 𝑑 are not
coprime.

(See Theorem 48 [REF], which completes this result).
Since 𝑟 and 𝑑 are not coprime, there exist two pairs (𝑟1, 𝑑1) and (𝑟2, 𝑑2) of integers

such that 𝑟1 ≥ 1 and 𝑟2 ≥ 2, 𝑟1 + 𝑟2 = 𝑟 , 𝑑1 + 𝑑2 = 𝑑 and
𝑑1
𝑟1

+ 𝑑2
𝑟2

=
𝑑

𝑟
.

Let 𝐸1 be a stable bundle of rank 𝑟1 and degree 𝑑1 and 𝐸2 a stable bundle of rank 𝑟2 and
degree 𝑑2 on 𝑋 . After Proposition 11, there exists a semi-stable bundle on 𝑋 of rank 𝑟
and degree 𝑑 such that Gr(𝐸) = 𝐸1 ⊕ 𝐸2 and not isomorphic to 𝐸1 ⊕ 𝐸2. We have
Lemma 16. There exists a bundle 𝐸0 on A1 × 𝑋 , such that

𝐹0 |{0}×𝑋 � 𝐸1 ⊕ 𝐸2 and 𝐹0 |{𝑡}×𝑋 � 𝐸 if 𝑡 ≠ 0 is an element of 𝑘 .

We can suppose that we have an exact sequence of vector bundles on 𝑋:

0 𝐸1 𝐸 𝐸2 0.

We consider the element 𝑢 of 𝐻1(A1 × 𝑋, 𝑝∗𝑋 (𝐸∗
2 ⊗ 𝐸1)), where 𝑝𝑋 denotes the projection

A1 × 𝑋 → 𝑋 , image of the element 𝑠 ⊗ 𝑢0 of 𝐻0(A1,O) ⊗ 𝐻1(𝑋, 𝐸∗
2 ⊗ 𝐸1), 𝑠 being the

section of O associated to 1𝑘 and 𝑢0 corresponding to the above exact sequence. It is easy
to see that the extension 𝐹0 of 𝑝∗𝑋 (𝐸2) by 𝑝∗𝑋 (𝐸1) defined by 𝑢 defines the hypotheses of
Lemma 16.

Let us prove now Proposition 15. We recover the notations from Definition 14.
Suppose that there exists a coarse moduli space 𝑌0 for 𝑆(𝑟, 𝑑). The bundle 𝐹0 from
Lemma 16 is a family of elements of 𝑆(𝑟, 𝑑) parametrized by A1. We then have

𝛼𝐹0 (0) = 𝜌(𝐸1 ⊕ 𝐸2) and 𝛼𝐹0 (𝑡) = 𝜌(𝐸) if 𝑡 ≠ 0,

but since 𝛼𝐹0 is induced by a morphism A1 → 𝑌0, we have 𝛼𝐹0 (0) = 𝜌(𝐸), by continuity,
which is absurd.

This achieves the proof of Proposition 15.
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Remark: Change of the base field
Let 𝐾 be a commutative algebraically closed field extension of 𝑘 , 𝑋𝐾 = 𝑋 ×𝑘 Spec(𝐾), 𝐸
a vector bundle on 𝑋 and 𝐸𝐾 = 𝑝∗(𝐸), 𝑝 denoting the projection 𝑋𝐾 → 𝑋 . Then we can
show that 𝐸𝐾 is semi-stable if and only if 𝐸 is (see Chapter 3 [REF] [?]).

We could define a family of semi-stable bundles parametrized by a Noetherian 𝑘-
scheme 𝑌 the following way: it is a locally free sheaf 𝐸 over 𝑌 ×𝑘 𝑋 such that for every
point 𝑦 of 𝑌 , the vector bundle (𝐸𝑦)𝑘 (𝑦) over 𝑋

𝑘 (𝑦) (𝑘 (𝑦) denoting the algebraic closure of
𝑘 (𝑦)), is semi-stable.

In fact these two definitions of a family of semi-stable bundles are equivalent (see
Theorem 19′).

III The moduli spaces of (semi-)stable bundles
In this section we sketch the proofs of the following results:

Theorem 17. Let (𝑟, 𝑑) be a pair of integers such that 𝑟 ≥ 2. There exists a coarse moduli
space for 𝑆′(𝑟, 𝑑) where the underlying 𝑘-scheme is a smooth quasi-projective variety,
denoted by𝑈𝑠 (𝑟, 𝑑).

This variety has a natural compactification denoted by 𝑈 (𝑟, 𝑑). The set of 𝑘-valued
points of 𝑈 (𝑟, 𝑑) is isomorphic to the quotient of 𝑆(𝑟, 𝑑) by the following equivalence
relation: for every pair (𝐸, 𝐹) of semi-stable bundles on 𝑋 of rank 𝑟 and degree 𝑑, 𝐸 and
𝐹 are equivalent if and only if Gr(𝐸) = Gr(𝐹). The variety𝑈 (𝑟, 𝑑) is normal.

In the case where 𝑟 and 𝑑 are coprime, we have𝑈 (𝑟, 𝑑) = 𝑈𝑠 (𝑟, 𝑑).

Theorem 18. Let (𝑟, 𝑑) a pair of coprime integers, with 𝑟 ≥ 2. Then there exists a fine
moduli space for 𝑆(𝑟, 𝑑).

Obviously the underlying 𝑘-scheme is 𝑈 (𝑟, 𝑑). After Theorem 18, there exists a
Poincaré bundle over 𝑈 (𝑟, 𝑑). We will see on section VI [REF] that there exists a
“natural” Poincaré bundle.

We have already admitted that𝑈𝑠 (𝑟, 𝑑) ≠ ∅. We can deduce that

dim(𝑈 (𝑟, 𝑑)) = 𝑟2(𝑔 − 1) + 1.

Finally we show that semi-stability (resp. stability) is an “open” property.

Theorem 19. Let 𝑌 be a Noetherian 𝑘-scheme and𝑊 a vector bundle on 𝑌 × 𝑋 . Then the
set of points 𝑦 of 𝑌 (𝑘) such that𝑊𝑦 is semi-stable (resp. stable) is an open subset of 𝑌 .

Remark: In fact we can show the following theorem:

Theorem 19′. Let 𝑌 be a Noetherian 𝑘-scheme and 𝑊 a locally free sheaf over 𝑌 ×𝑘 𝑋 .
Then the set of points 𝑦 of 𝑌 such that (𝑊𝑦)𝑘 (𝑦) is semi-stable (resp. stable) on 𝑋

𝑘 (𝑦) is an
open subset of 𝑌 .

(See the remark at the end of Section II of the third chapter [REF]).
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Remark: The variety 𝑈 (𝑟, 𝑑) also has a “universal property”: for every family 𝐸 of
semi-stable vector bundles of rank 𝑟 and degree 𝑑 parametrized by a Noetherian 𝑘-scheme
𝑇 , there exists a unique morphism 𝑓 : 𝑇 → 𝑈 (𝑟, 𝑑), such that for every point 𝑡 of 𝑇 (𝑘),
the point 𝑓 (𝑡) of𝑈 (𝑟, 𝑑) is associated to Gr(𝐸𝑡).

The first stage on the constrution of the moduli spaces is the search of a family of
elements of 𝑆(𝑟, 𝑑) “containing” all the elements of 𝑆(𝑟, 𝑑). We achieve this by using the
Grothendieck schemes.

A Grothendieck schemes
We easily see that to study 𝑆(𝑟, 𝑑), we can take 𝑑 as big as we want. This justifies

Lemma 20. Let (𝑟, 𝑑) a pair of integers such that 𝑟 ≥ 2 and 𝑑 > 𝑟 (2𝑔 − 1). Then if 𝐸 is
a semi-stable vector bundle on 𝑋 , of rank 𝑟 and degree 𝑑, we have:

(i) the bundle 𝐸 is generated by its global sections

(ii) ℎ1(𝑋, 𝐸) = 0.

We then have, after the Theorem of Riemann–Roch,

ℎ0(𝑋, 𝐸) = 𝑑 + 𝑟 (1 − 𝑔).

In order to prove (ii), we suppose that ℎ1(𝑋, 𝐸) ≠ 0. By Serre duality, we have
Hom(𝐸, 𝐾) ≠ {0}, 𝐾 denoting the canonical bundle on 𝑋 . Since 𝐸 is semi-stable, this
implies that

𝑟 (2𝑔 − 2) = 𝑟 deg(𝐾) ≥ 𝑑,

but this is false by hypothesis, so we have ℎ1(𝑋, 𝐸) = 0.
In order to prove (i), it remains to show that for every point 𝑥 of 𝑋 , the canonical

morphism
𝑟𝑥 : 𝐻0(𝑋, 𝐸) −→ 𝐸𝑥

is surjective.
If 𝐿𝑥 denotes the line bundle on 𝑋 associated to the divisor 𝑥, we have an exact

sequence of sheaf morphisms on 𝑋

0 𝐸 ⊗ 𝐿−1
𝑥 𝐸 𝐸𝑥 0,

𝐸𝑥 denoting this time the sheaf on 𝑋 centered on 𝑥 and with germ 𝐸𝑥 in that point. The
long exact sequence associated to the exact sequence above gives

𝐻0(𝑋, 𝐸) 𝐸𝑥 𝐻1(𝑋, 𝐸 ⊗ 𝐿−1
𝑥 ).𝑟𝑥

It thus suffices to prove that ℎ1(𝑋, 𝐸 ⊗ 𝐿−1
𝑥 ) = 0, which results from the fact that

deg(𝐸 ⊗ 𝐿−1
𝑥 ) = deg(𝐸) − 𝑟 > 𝑟 (2𝑔 − 2),

and from the proof of (ii).
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This concludes the proof of Lemma 20.

Let us keep the notations of Lemma 20 and put 𝑝 = 𝑑 + 𝑟 (1 − 𝑔). It follows from
Lemma 20 that the bundle 𝐸 is isomorphic to a quotient of O ⊗ 𝑘 𝑝. Moreover, the Hilbert
polynomial of 𝐸 is

𝑃(𝑇) = 𝑝 + 𝑟 deg(O(1))𝑇.

In particular, it does not depend of the class of 𝐸 in 𝑆(𝑟, 𝑑).
We define now the Grothendieck schemes. (See [8]).
Let F be a coherent sheaf on 𝑋 , 𝑃0 an element of 𝑘 [𝑇] of degree ≤ 1.
A flat family of quotients of F with Hilbert polynomial 𝑃0 parametrized by a Noethe-

rian 𝑘-scheme 𝑌 is given by a coherent sheaf G on 𝑌 ×𝑘 𝑋 , flat over 𝑌 , and by a surjective
morphism

𝑝∗𝑋 (F) −→ G

(𝑝𝑋 denoting the projection 𝑌 ×𝑘 𝑋 → 𝑋) such that for every point 𝑦 of 𝑌 the Hilbert
polynomial of G𝑦 over 𝑋𝑦 is 𝑃0.

Two such families G and G′ are said isomorphic if there exists an isomorphism

𝑔 : G −→ G′,

such that the diagram

G

𝑝∗𝑋 (F)

G′

𝑔

is commutative.
On the other hand, if 𝑓 : 𝑌 → 𝑌 ′ is a morphism of Noetherian 𝑘-schemes and G′ is

such a family on 𝑌 ′, we define in an obvious way the family 𝑓 ∗(G′).
We can show that the functor

Sch −→ Set

associating to 𝑌 the set of isomorphism classes of flat families of quotients of F

parametrized by 𝑌 is representable by a projective algebraic 𝑘-scheme. We denote this
𝑘-scheme by Quot𝑃0

F/𝑋/𝑘 .
We put

𝑄 = Quot𝑃O×𝑘 𝑝/𝑋/𝑘 .

It follows from the universal property of 𝑄 that there exists over 𝑄 × 𝑋 a flat family U of
quotients of O ⊗ 𝑘 𝑝, which is “universal”.

Let
𝜌 : 𝑝∗𝑋 (O ⊗ 𝑘 𝑝) −→ U

be the canonical morphism.
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There exists an open subset 𝑅 of 𝑄 characterized by the following property: for every
point 𝑞 of 𝑅, the sheaf U𝑞 is locally free and the canonical map:

𝐻0(𝑋𝑞,O ⊗ 𝑘 𝑝) −→ 𝐻0(𝑋𝑞,U𝑞)

is an isomorphism. The restriction V of U to 𝑅 is a locally free sheaf of rank 𝑟. Endowed
with V, 𝑅 has the following local universal property:

Proposition 21. Given a Noetherian 𝑘-scheme 𝑌 and a locally free sheaf 𝐹 of rank 𝑟 on
𝑌 ×𝑘 𝑋 , such that for every point 𝑦 of 𝑌 , we have

(i) 𝐹𝑦 has degree 𝑑

(ii) 𝐹𝑦 is generated by global sections

(iii) ℎ1(𝑋, 𝐹𝑦) = 0,

for every point 𝑦0 of 𝑌 , there exists a neighbourhood 𝑌0 of 𝑦0 and a morphism 𝑓 : 𝑌0 → 𝑅
such that

𝐹 |𝑌0×𝑋 � 𝑓 #(V).

We take as 𝑌0 an affine neighbourhood of 𝑦0. We easily see that the sheaf 𝑝𝑌∗(𝐹) is
locally free of rank 𝑝 on 𝑌 (𝑝𝑌 denoting the projection 𝑌 ×𝑘 𝑋 → 𝑌 ). On 𝑌0 it is then
isomorphic to O𝑌0 ⊗ 𝑘 𝑝. After (ii), the canonical morphism

𝑝∗𝑌 (𝑝𝑌∗(𝐹)) −→ 𝐹

is surjective. Over𝑌0, 𝑝∗𝑌 (𝑝𝑌∗(𝐹)) is isomorphic to 𝑝∗𝑋 (O ⊗ 𝑘 𝑝), we thus have a surjective
morphism

𝑝∗𝑋 (O ⊗ 𝑘 𝑝) −→ 𝐹.

There exists thus a morphism 𝑓 : 𝑌0 → 𝑄 such that 𝐹 |𝑌0×𝑋 � 𝑓 #(U). But it is immediate
that 𝑓 takes values on 𝑅.

This concludes the proof of Proposition 21.

The group GL(𝑝) = Aut(O ⊗ 𝑘 𝑝) acts on the sheaf U. We will be happy with making
this action explicit: let 𝜌 : 𝑝∗𝑋 (O ⊗ 𝑘 𝑝) → U the canonical morphism, and 𝐴 an element
of GL(𝑝). We can construct a flat family parametrized by 𝑄 in the following way: the
underlying sheaf is U but the surjective morphism is 𝜌 ◦ 𝑝∗𝑋 (𝐴−1). This family defines
an automorphism 𝜎𝐴 of 𝑄 and an isomorphism 𝜏𝐴 : U → 𝜎#

𝐴 (U). For every point 𝑧 of
𝑄 ×𝑘 𝑋 and every element 𝑢 of U𝑧, we have

𝐴𝑢 = 𝜏𝐴 (𝑢).

The underlying automorphism of 𝑄 is 𝜎𝐴.
We remark that the action of the subgrop 𝑘∗𝐼 of GL(𝑝) on 𝑄 is trivial, and as a

consequence the action of GL(𝑝) on 𝑄 induces one of PGL(𝑝). However the action of
𝑘∗𝐼 on U is that of 𝑘∗ by homothety, and thus it is not trivial.

We can make precise the action of PGL(𝑝) on 𝑅:

Proposition 22. (i) The open set 𝑅 is PGL(𝑝)-invariant.
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(ii) For every pair (𝑞1, 𝑞2) of closed points of 𝑅 the vector bundles over 𝑋 U𝑞1 and
U𝑞2 are isomorphic if and only if 𝑞1 and 𝑞2 are in the same orbit of the action of
PGL(𝑝) on 𝑅.

(iii) For every point 𝑞 of 𝑅, the stabilizer of 𝑞 for the action of PGL(𝑝) is isomorphic to
the quotient Aut(U𝑞)/𝑘∗𝐼.

(See Seshadri [36] Prop.6 of chap.II, and Newstead [28] Thm.5.3 p.138 where it is
also proven that 𝑅 is open).

Proposition 23. The scheme 𝑅 is an irreducible and smooth quasi-projective variety.

After Grothendieck, 𝑄 is a projective scheme over 𝑘 . Thus it suffices to prove that 𝑅
is connected and smooth.

For every closed point 𝑞0 of 𝑅, we have a morphism

PGL(𝑝) −→ 𝑅(𝑘)
𝐴 ↦−→ 𝐴 · 𝑞

where the image consists on the closed points 𝑞 of 𝑅 such that the vector bundles U𝑞 and
U𝑞0 on 𝑋 are isomorphic.

In order to show that 𝑅 is connected, it thus suffices to show that for every pair (𝑞1, 𝑞2)
of closed points of 𝑅, there exists a closed point 𝑞0 of 𝑅, and a connected component 𝑅1
(resp. 𝑅2) of 𝑅 gathering the orbits of 𝑞1 and 𝑞0 (resp. 𝑞2 and 𝑞0).

We use the following lemma, due to Serre:

Lemma 24. Let 𝐹 be a vector bundle on 𝑋 generated by global sections. Then there exists
an exact sequence

0 O ⊗ 𝑘 rk(𝐹)−1 𝐹 det(𝐹) 0.

For every point 𝑥 of 𝑋 the canonical morphism 𝐻0(𝑋, 𝐹) → 𝐹𝑥 is surjective and the
set of sections of 𝐸 that vanish on at least one point of 𝑋 is a subvariety 𝑌 of 𝐻0(𝑋, 𝐹) of
dimension lower or equal than ℎ0(𝑋, 𝐹) − rk(𝐹) + 1. Thus there exists a vector subspace
𝑀 of 𝐻0(𝑋, 𝐹) of rank rk(𝐹) − 1, not intersecting 𝑌 . The canonical morphism of vector
bundles on 𝑋

O ⊗ 𝑀 −→ 𝐹

is injective. Its cokernel is of rank 1 and thus isomorpic to det(𝐹).
This concludes the proof of Lemma 24.

We consider now the Jacobian 𝐽 (𝑑) and a Poincaré bundle L on 𝐽 (𝑑) × 𝑋 , we denote
𝐸 the trivial bundle on 𝐽 (𝑑) × 𝑋 , with fibre 𝑘𝑟−1. The sheaf 𝑅1𝑝𝐽∗(Hom(L, 𝐸)) on 𝐽 (𝑑)
is locally free of rank (𝑟 − 1)(𝑔 + 𝑑 − 1), 𝑝𝐽 denoting the projection 𝐽 (𝑑) × 𝑋 → 𝐽 (𝑑) . We
denote by 𝑊 this bundle and 𝜋 : 𝑊 → 𝐽 (𝑑) the canonical projection. On each point 𝐿 of
𝐽 (𝑑) , the fibre𝑊𝐿 is 𝐻1(𝑋,Hom(L𝐿 ,O ⊗ 𝑘 𝑝)).

There exists a bundle 𝐹 over𝑊 × 𝑋 , and an exact sequence

0 𝜋#(𝐸) 𝐹 𝜋(L) 0

such that for every point 𝑤 of𝑊 , the restriction of the exact sequence above to 𝑤 × 𝑋:
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0 O ⊗ 𝑘 𝑝 𝐹𝑤 L𝜋(𝑤) 0

is associated to the element 𝑤 of 𝐻1(𝑋,Hom(L𝜋(𝑤) ,O ⊗ 𝑘 𝑝)). This follows from the
Remark 2 following the Proposition 2 of Appendix II [REF] and from the fact that for
every point 𝐿 of 𝐽 (𝑑) , we have ℎ0(𝑋,L∗

𝐿) = 0. The points 𝑤 of 𝑊 corresponding to the
bundles having the properties of Lemma 20 form an open subset𝑊′ of𝑊 .

After Lemma 24, there exists a point 𝑤1 (resp. 𝑤2) of𝑊′, such that 𝐹𝑤1 is isomorphic
to U𝑞1 (resp. 𝐹𝑤2 . . . ).

After Proposition 21, there exists an open subset𝑊1 (resp. 𝑊2) of𝑊′ and a morphism
𝑓1 : 𝑊1 → 𝑅 (resp. 𝑓2. . . ) such that 𝐹 |𝑊1×𝑋 � 𝑓 #

1 (V) (resp. . . . ).
But being 𝑊 irreducible, 𝑊1 and 𝑊2 have nonempty intersection and are connected.

This suffices to show our assertion and proves connectedness of 𝑅.
For smoothness, it is necessary to use the differential properties of 𝑄. If 𝑞 is a closed

point of 𝑅, we have an exact sequence of morphisms of vector bundles on 𝑋:

0 𝐶𝑞 O ⊗ 𝑘 𝑝 𝑈𝑞 0,

𝐶𝑞 denoting the kernel bundle of 𝜌 |{𝑞}×𝑋 .
After Grothendieck, 𝑅 is smooth at 𝑞 if and only if we have ℎ1(𝑋,Hom(𝐶𝑞,U𝑞)) = 0,

which follows immediately form the above exact sequence and from the fact that, by the
definition of 𝑅, we have ℎ1(𝑋,U𝑞) = 0.

This concludes the proof of Proposition 23.

Remark: The tangent space to 𝑅 at 𝑞 is identified with Hom(𝐶𝑞,U𝑞). This allows to
compute the dimension of 𝑅 by using the exact sequence above. We find

dim(𝑅) = 𝑝2 + 𝑟2(𝑔 − 1).

From the exact sequence above, we deduce the exact sequence

0 End(U𝑞) Hom(O ⊗ 𝑘 𝑝,U𝑞) Hom(𝐶𝑞,U𝑞) = 𝑇𝑅,𝑞𝑎

The space Hom(O ⊗ 𝑘 𝑝,U𝑞) is identified with 𝑀 (𝑝), the space of 𝑝 × 𝑝 matrices, which
is also 𝑇PGL(𝑝),𝑘 𝐼 . The map 𝑎 is just the tangent map

𝑇PGL(𝑝),𝑘 𝐼 −→ 𝑇𝑅,𝑞,

coming form the morphism

PGL(𝑝) −→ 𝑅

𝐴 ↦−→ 𝐴 · 𝑞.

B Construction of the moduli spaces

IV The complex case
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