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MATHEMATICAL ANALYSIS. – A �niteness thoerem concerning compact analytic
varieties. Note by Henri Cartan and Jean-Pierre Serre, presented by Jacques
Hadamard.

Theorem. – Let X be a compact complex analytic variety. LetF be a coherent analytic
sheaf (1) over X. Then the cohomology groups Hq(X,F) (q an integer ≥ 0) are complex
vector spaces of �nite dimension.

This result is true in the particular case where F is the sheaf of germs of holo-
morphic sections of an analytic bundle E over X, where the fibre is a complex vector
space of finite dimension (2). A sheaf like that is locally isomorphic to the sheaf Or

of r-tuples of germs of holomorphic functions (r denoting the dimension of the fibre
of E).

1. Before proving the theorem above, we give some preliminary definitions. An
open subset V of X is called adapted to F if V is an Stein manifold (1) and if there
exists a finite system of p sections si ∈ H0(V,F) that generate Fx in every point
x ∈ V . Every su�ciently small Stein open subset is adapted to F. If V is adapted to
F, F is identified, on V , with the quotient of the sheaf Op by a subsheaf R, which is
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1 Cf. Séminaire Ec. Norm. Sup., 1951-1952, “exposés” XVIII and XIX, aswell as the conference by

H. Cartan, Colloque de Bruxelles sur les fonctions de plusieurs variables (March 1953).
2 In this particular case, the theorem has already been proven by K. Kodaira (under slightly more

restrictive hypotheses), thanks to a generalization of the theory of harmonic forms. Cf. K. Kodaira,
Proc. Nat. Acad. Sc. U.S.A., 39, 1953 (to appear).
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coherent, since F is coherent. Thus Hq(V,R) = 0 for q > 0 (1). As a consequence,
the sequence

0 H0(V,R) H0(V,Op) H0(V,F) 0

is exact. We endow H0(V,Op) with the topology of compact convergence; it is a
Fréchet space (i.e. locally convex, metrizable and complete). H0(V,R) is closed
(3) in H0(V,Op), so the quotient space H0(V,Op)/H0(V,R) is a Fréchet space. This
defines a topology over H0(V,F), and we easily see that it does not depend on the
choice of the si.

Well understood, if F is isomorphic to Op over V , the topology of H0(V,F) is
the compact convergence topology.

Lemma. – Let F be a coherent analytic sheaf over a complex analytic variety X;
let V and V ′ two open subsets of X adapted to F, such that V ⊂ V ′. Then the map
ϕ : H0(V ′,F) → H0(V,F) is continuous. Moreover, if the closure of V is compact and
contained in V ′, then ϕ is completely continuous.

The first point is obvious. The second results from the fact that every set of
holomorphic functions on V ′ bounded over V̄ induce in V a relatively compact set.

2. Let U = (Ui)i∈I a finite covering of the compact variety X by open subsets Ui
adapted to F. For every integer q ≥ 0, we associate to every tuple (i0, . . . , iq) of
indices of I a section fi0,...,iq of F over Ui0...iq = Ui0 ∩ · · · ∩ Uiq , with an alterating
dependence on the indices. This tuples (fi0...iq) form a vector space Cq(U,F). The
topology of H0(Ui0...iq ,F) obtained by the procedure of nº 1, define over Cq(U,F)
a Fréchet space topology. We define in the usual way a coboundary operator δ :
Cq(U,F) → Cq+1(U,F), which is continuous after the lemma. The kernel Zq(U,F)
of δ is a Fréchet space. We denote by Hq(U,F) the cohomology spaces of the
complex {Cq(U,F), δ}.

3. Take now two open coverings U = (Ui) and U ′ = (U ′i) so that Ūi ⊂ U ′ and
the Ui and U ′i are open subsets adapted to F. The linear maps

Hq(U ′,F) Hq(U,F) Hq(X,F)
ρ

are (algebraic) isomorphisms, since (4) the cohomology groups Hp(U ′i0,...,iq ,F) and
Hq(Ui0,...,iq ,F) are trivial for p > 0. Now it su�ces to prove that Hq(U,F) has finite
dimension.

The lemma implies that the map r : Zq(U ′,F) → Zq(U,F) is completely con-
tinuous. Let then E be the product space Cq−1(U,F) × Zq(U ′,F), F the space
Zq(U,F), u the map (δ, r) from E to F, and v the map (0,−r). Since ρ is an iso-
morphism, u maps E onto F; a theorem of L. Schwartz (5) now shows that the image
of u + v = (δ, 0) is a closed subspace of finite dimension of F. This shows that
Hq(U,F), and thus also Hq(X,F), has finite dimension.

3 Cf. H. Cartan, Ann. Ec. Norm. Sup., 61, 1944, p. 149-197 (first corollary to theorem α, p. 194).
4 This result is not explicit in the bibliography; it is proven by a analogous method to that used

by A. Weil in his proof of the de Rham theorems. (Comm. Math. Helv., 26, 1952, p. 119-145).
5 Comptes rendus, 236, 1953, p. 2472 (corollary to theorem 2).

2


