El sistema de Hitchin

Guillermo Gallego

Directores: Oscar García-Prada & Enrique Arrondo

Facultad de Matemáticas, UCM

24 junio de 2021 — PhDay

Magnetostática

• Las ecuaciones de la magnetostática en el vacío son las ecuaciones de Maxwell sin campo eléctrico, cargas ni corrientes.

Ecuaciones de la magnetostática

$$\begin{cases} \nabla \cdot \mathbf{B} = 0, \\ \nabla \times \mathbf{B} = 0. \end{cases}$$

- **B** : $\mathbb{R}^3 \to \mathbb{R}^3$ es el campo magnético.
- $\nabla = (\partial_x, \partial_y, \partial_z)$, de modo que $\nabla \cdot y \nabla \times$ son los operadores divergencia y rotacional, respectivamente.

Magnetostática con formas diferenciales

Podemos escribir

- $\beta = B_1 dy \wedge dz + B_2 dz \wedge dx + B_3 dx \wedge dy \in \Omega^2(\mathbb{R}^3)$.
- $d\beta = (\nabla \cdot \mathbf{B}) dx \wedge dy \wedge dz$.
- $\star : \Omega^2(\mathbb{R}^3) \to \Omega^1(\mathbb{R}^3)$, $dx_i \wedge dx_j \mapsto dx_k$, el isomorfismo de Hodge.
- $\bullet \star \beta = B_1 dx + B_2 dy + B_3 dz$
- $d(\star\beta) = (\nabla \times B)_1 dy \wedge dz + (\nabla \times B)_2 dz \wedge dx + (\nabla \times B)_3 dx \wedge dy$

Ecuaciones de la magnetostática

$$\begin{cases} d\beta = 0, \\ d(\star \beta) = 0. \end{cases}$$

Magnetostática en un espacio curvo

- (M, g) variedad Riemanniana, compacta y orientable de dimensión n.
- $\star : \Omega^k(M) \to \Omega^{n-k}(M), \alpha \wedge \star \beta = \langle \alpha, \beta \rangle \text{vol}_g.$

Teorema (Hodge-Maxwell)

Sea k > 0. En cada clase de cohomología de de Rham $b \in H^k_{dR}(M)$ existe una única k-forma $\beta \in b$ tal que

$$\begin{cases} d\beta = 0 \\ d(\star \beta) = 0. \end{cases}$$

Teoría gauge U(1)

- Idea: En QM las funciones de onda se definen localmente y se pegan por "transformaciones gauge".
- **Planteamiento**: (M, g) como antes, $L \to M$ fibrado de línea complejo, H métrica hermítica en L, A conexión H-unitaria en L y $F_A \in \Omega^2(M)$ su curvatura. Siempre tenemos $dF_A = 0$.

Conexiones de Maxwell

Decimos que *A*, una conexión *H*-unitaria en *L*, es una conexión de Maxwell si se cumple la siguiente ecuación

$$d(\star F_A)=0.$$

Espacio de móduli

- X superficie de Riemann de género g.
- $L \to X$ fibrado de línea complejo con $c_1(L) = 0$. H métrica hermítica en L. En tal caso A de Maxwell implica $F_A = 0$.
- N_L = conexiones de Maxwell en L salvo transformación gauge. Es fácil ver que

$$\mathcal{N}_L \cong \frac{H^1(\mathcal{M}, \mathbb{R})}{H^1(\mathcal{M}, \mathbb{Z})} \cong \frac{\mathbb{R}^{2g}}{\mathbb{Z}^{2g}} = U(1)^{2g} = \operatorname{Hom}(\pi_1(X), U(1)).$$

• El siguiente resultado es una consecuencia del teorema de Hodge-Maxwell:

Teorema

 \mathcal{N}_L es difeomorfo al espacio de estructuras holomorfas en L salvo isomorfismo.

Teoría gauge U(n)

• Planteamiento: M como antes, E o M fibrado vectorial complejo de rango n, H métrica hermítica en E, A conexión H-unitaria en E y $F_A \in \Omega^2(M, \operatorname{End}(E))$ su curvatura. Siempre tenemos $dF_A = 0$.

Conexiones de Yang-Mills

Decimos que *A*, una conexión *H*-unitaria en *E*, es una conexión de Yang-Mills si se cumple la siguiente ecuación

$$d(\star F_A)=0.$$

Espacio de móduli

- X superficie de Riemann de género g
- $E \to X$ fibrado vectorial de rango n y $c_1(E) = 0$. H métrica hermítica en E. En tal caso A de Yang-Mills implica $F_A = 0$.
- N_E = conexiones de Yang-Mills en E salvo transformación gauge. No es difícil ver que

$$\mathcal{N}_E \cong \operatorname{Hom}(\pi_1(X), U(n))/U(n).$$

• El siguiente resultado es un "teorema de Hodge no abeliano", mucho más complicado que el teorema de Hodge-Maxwell.

Teorema (Narasimhan-Seshadri)

 N_E es difeomorfo al espacio de estructuras holomorfas estables en E salvo isomorfismo.

Yang-Mills + campo de Higgs

- X superficie de Riemann de género g
- $E \rightarrow X$ fibrado vectorial de rango $n y c_1(E) = 0$. H métrica hermítica en E.
- A conexión unitaria en $E, \varphi \in \Omega^{1,0}(X, \operatorname{End}(E))$, "campo de Higgs".

Ecuaciones de Hitchin

Decimos que el par (A, φ) es una solución a la ecuaciones de Hitchin si

$$\begin{cases} F_A + [\varphi, \varphi^{\dagger}] = 0 \\ \bar{\partial}_A \varphi = 0. \end{cases}$$

- En particular, nótese que si $\varphi = 0$, recuperamos la ecuación de Yang-Mills.
- \mathcal{M}_E = soluciones a las ecuaciones de Hitchin salvo transformación gauge. Es una variedad hiperkähler.

Fibrados de Higgs

• X superficie de Riemann de género g. K_X el fibrado canónico.

Definición

Un fibrado de Higgs es un par (\mathscr{E}, φ) , con \mathscr{E} un fibrado vectorial holomorfo en X y $\varphi \in H^0(X, \operatorname{End}(\mathscr{E}) \otimes K_X)$.

• $E \rightarrow X$ fibrado vectorial de rango $n y c_1(E) = 0$. H métrica hermítica en E.

Teorema (Corlette-Donaldson)

 $\mathcal{M}_E = \operatorname{Hom}(\pi_1(X), \operatorname{GL}(n, \mathbb{C}))/\operatorname{GL}(n, \mathbb{C}).$

Teorema (Hitchin-Simpson)

 \mathcal{M}_E es difeomorfo al espacio de estructuras de fibrado de Higgs estables en E salvo isomorfismo.

El sistema de Hitchin

Aplicación de Hitchin

Sea
$$\mathcal{B} = \bigoplus_{i=1}^n H^0(X, K_X^i).$$

$$h: \mathcal{M}_E \longrightarrow \mathcal{B}$$

 $(\mathscr{E}, \varphi) \longmapsto (b_1(\varphi), \dots, b_n(\varphi)),$

con los $b_i(\varphi) \in H^0(X, K_x^i)$ dados por

$$\det(T \otimes \mathrm{id}_E - \varphi) = T^n + \sum_{i=1}^n b_i(\varphi) T^{n-i}.$$

Teorema (Hitchin)

La aplicación de Hitchin es un sistema algebraicamente completamente integrable (una fibración lagrangiana cuyas fibras son variedades abelianas).

La correspondencia espectral

La demostración se basa en la siguiente correspondencia:

Teorema (Hitchin)

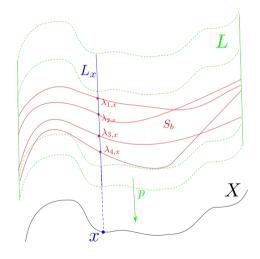
A cada $b \in \mathcal{B}$ se le asocia un recubridor ramificado de grado n, la curva espectral

$$\pi: S_b \longrightarrow X$$
,

y se tiene un isomorfismo

$$\pi_*: \mathcal{N}_{S_b\otimes\mathbb{C}} \longrightarrow h^{-1}(b).$$

La curva espectral



Generalizaciones

En mi tesis estamos estudiando las siguientes generalizaciones del sistema de Hitchin:

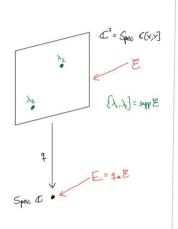
Fibrados de Higgs torcidos por un fibrado vectorial

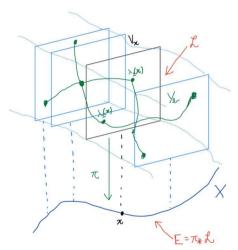
- El fibrado canónico K_X se sustituye por un fibrado vectorial V de rango > 1.
- También existe una correspondencia espectral.
- Algunos resultados disponibles en: arxiv:2105.05543 (junto con M.S. Narasimhan y Oscar García-Prada).

El sistema de Hitchin multiplicativo

- Se consideran pares (*E*, *g*) con *E* un *G*-fibrado principal y *g* una transformación gauge meromorfa, con datos meromorfos en la grassmaniana afín de *G*.
- Posible relación con el programa de Langlands geométrico.

Generalización de la curva espectral





15 / 15