Multiplicative Higgs bundles and involutions

Guillermo Gallego

Universidad Complutense de Madrid - Instituto de Ciencias Matemáticas

ICMAT

Workshop on the Hitchin system, Langlands duality and mirror symmetry 27th April 2023

Joint work with Oscar García-Prada (arXiv:2304.02553). This work is supported by the UCM under the contract CT63/19-CT64/19

Contents

1 The multiplicative Hitchin fibration

- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

Multiplicative Higgs bundles

- k algebraically closed field of char. 0
- G semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus
- X -smooth algebraic curve over k

Multiplicative Higgs bundles

- k algebraically closed field of char. 0
- G semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus
- X -smooth algebraic curve over k
- $d \in \mathbb{N}, X_d = X^d / \mathfrak{S}_d$ (elements are effective divisors of deg. *d*)
- $\blacksquare n \in \mathbb{N}, d = (d_1, \ldots, d_n) \in \mathbb{N}^n, X_d = X_{d_1} \times \cdots \times X_{d_n}.$
- **D** = $(D_1, ..., D_n) \in X_d, D = D_1 + \cdots + D_n, |D|$ support of D.

Multiplicative Higgs bundles

- k algebraically closed field of char. 0
- G semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus
- X -smooth algebraic curve over k
- $d \in \mathbb{N}, X_d = X^d / \mathfrak{S}_d$ (elements are effective divisors of deg. *d*)
- $\blacksquare n \in \mathbb{N}, d = (d_1, \ldots, d_n) \in \mathbb{N}^n, X_d = X_{d_1} \times \cdots \times X_{d_n}.$
- **D** = $(D_1, ..., D_n) \in X_d, D = D_1 + \cdots + D_n, |D|$ support of D.

Stack of multiplicative G-Higgs bundles

$$\mathcal{M}_{\boldsymbol{d}}(G) = \left\{ (\boldsymbol{D}, E, \varphi) : \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \mathsf{Bun}_{G}(X), \varphi \in \Gamma(X \setminus |D|, E(G)) \right\}.$$

■ Want a finite-type stack? Fix invariant.

- Want a finite-type stack? Fix invariant.
- $(\boldsymbol{D}, \boldsymbol{E}, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(\boldsymbol{G}), \, \boldsymbol{x} \in |\boldsymbol{D}|.$
- *z* formal variable around x, $\mathcal{O} = k[[z]]$, K = k((z)).
- $\blacksquare \ \varphi|_{\operatorname{Spec}(K)} \in \Gamma(\operatorname{Spec}(K), E|_{\operatorname{Spec}(\mathcal{O})}(G)) \text{ induces } \operatorname{inv}_x(\varphi) \in G(\mathcal{O}) \setminus G(K) / G(\mathcal{O}).$

- Want a finite-type stack? Fix invariant.
- $(\boldsymbol{D}, \boldsymbol{E}, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(\boldsymbol{G}), \, \boldsymbol{x} \in |\boldsymbol{D}|.$
- *z* formal variable around *x*, $\mathcal{O} = k[[z]], K = k((z))$.

Cartan decomposition

 $G(\mathcal{O}) \setminus G(K) / G(\mathcal{O}) \cong X_*(T)_+.$

• $inv(\varphi)$ is a $X_*(T)_+$ -valued divisor.

- Want a finite-type stack? Fix invariant.
- $(\boldsymbol{D}, \boldsymbol{E}, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(\boldsymbol{G}), \, \boldsymbol{x} \in |\boldsymbol{D}|.$
- *z* formal variable around *x*, $\mathcal{O} = k[[z]], K = k((z))$.

Cartan decomposition

 $G(\mathcal{O}) \setminus G(K) / G(\mathcal{O}) \cong X_*(T)_+.$

- $inv(\varphi)$ is a $X_*(T)_+$ -valued divisor.
- $\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_n) \in (\mathsf{X}_*(T)_+)^n.$

Stack of multiplicative G-Higgs bundles of type λ

 $\mathcal{M}_{\boldsymbol{d},\boldsymbol{\lambda}}(G) = \left\{ (\boldsymbol{D},\boldsymbol{E},\varphi) \in \mathcal{M}_{\boldsymbol{d}}(G): \mathsf{inv}(\varphi) \leq \boldsymbol{\lambda} \cdot \boldsymbol{D} \right\}.$

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$k[G]^G \cong k[T]^W,$$

for $W = N_G(T)/T$ the Weyl group.

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$k[G]^G \cong k[T]^W,$$

for $W = N_G(T)/T$ the Weyl group. In particular, there are *G*-invariant functions b_1, \ldots, b_r with highest weights $\omega_1, \ldots, \omega_r$ the fundamental dominant weights of *T* such that

$$k[G]^G = k[b_1,\ldots,b_r].$$

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$k[G]^G \cong k[T]^W,$$

for $W = N_G(T)/T$ the Weyl group. In particular, there are *G*-invariant functions b_1, \ldots, b_r with highest weights $\omega_1, \ldots, \omega_r$ the fundamental dominant weights of *T* such that

$$k[G]^G = k[b_1,\ldots,b_r].$$

Multiplicative Hitchin map

Let $\mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G) \to X_{\boldsymbol{d}}$ with $\mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G)_{\boldsymbol{D}} := \bigoplus_{i=1}^{r} H^{0}(X, \mathcal{O}_{X}(\langle \omega_{i}, \boldsymbol{\lambda} \cdot \boldsymbol{D} \rangle)).$

$$h_{\boldsymbol{d},\boldsymbol{\lambda}}: \mathcal{M}_{\boldsymbol{d},\boldsymbol{\lambda}}(G) \longrightarrow \mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G)$$
$$(\boldsymbol{D}, \boldsymbol{E}, \varphi) \longmapsto (b_1(\varphi), \dots, b_r(\varphi))$$

- Present in the physics literature since the late 90s.
- **2002.** Introduced in the AG literature by Hurtubise–Markman (integrable system).
- 2010. HK-style correspondence of multiplicative $GL_r(\mathbb{C})$ -Higgs bundles with "Hermitian-Einstein" singular U(r)-monopoles, by Charbonneau-Hurtubise. Extended by Smith (2016) and Mochizuki (2017).
- 2011. Considered by Frenkel-Ngô in the context of geometrization of trace formulas. They suggest the Vinberg monoid approach, further developed in the works of Bouthier (2014-15) and J. Chi (2018).
- **2023.** Used in the proof of the Fundamental Lemma for the groups in the thesis of G. Wang.

Contents

1 The multiplicative Hitchin fibration

- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

- A monoid *M* is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group *M*[×].
- An algebraic monoid (over *k*) is a monoid object in the category of *k*-schemes. It is reductive if *M*[×] is reductive.

- A monoid *M* is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group *M*[×].
- An algebraic monoid (over *k*) is a monoid object in the category of *k*-schemes. It is reductive if *M*[×] is reductive.
- Example:

$$\operatorname{Mat}_{n \times n} : \operatorname{Alg}_k \longrightarrow \operatorname{Monoids}$$

 $A \longmapsto \operatorname{Mat}_{n \times n}(A)$

is a reductive monoid over k with $(Mat_{n \times n})^{\times} = GL_n$.

- A monoid *M* is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group *M*[×].
- An algebraic monoid (over *k*) is a monoid object in the category of *k*-schemes. It is reductive if *M*[×] is reductive.

Example:

$$\operatorname{Mat}_{n \times n} : \operatorname{Alg}_k \longrightarrow \operatorname{Monoids} A \longmapsto \operatorname{Mat}_{n \times n}(A)$$

is a reductive monoid over k with $(Mat_{n \times n})^{\times} = GL_n$.

■ An algebraic monoid can also be thought as a (*M*[×] × *M*[×])-equivariant open embedding of its unit group *M*[×]. ("Nonabelian toric varieties").

Abelianization

- *G* as before. *M* a reductive monoid with $(M^{\times})' = G$.
- The GIT quotient

$$\alpha_M: M \longrightarrow \mathbf{A}_M := M /\!\!/ (G \times G)$$

is called the abelianization of *M*.

• \mathbf{A}_M is a toric variety for the torus $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G)$.

Abelianization

- *G* as before. *M* a reductive monoid with $(M^{\times})' = G$.
- The GIT quotient

$$\alpha_M: M \longrightarrow \mathbf{A}_M := M /\!\!/ (G \times G)$$

is called the abelianization of *M*.

- \mathbf{A}_M is a toric variety for the torus $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G)$.
- Warning! "Abelianization"

Abelianization

- *G* as before. *M* a reductive monoid with $(M^{\times})' = G$.
- The GIT quotient

$$\alpha_M: M \longrightarrow \mathbf{A}_M := M /\!\!/ (G \times G)$$

is called the abelianization of *M*.

- \mathbf{A}_M is a toric variety for the torus $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G)$.
- Warning! "Abelianization"
- A homomorphism $f: M_1 \rightarrow M_2$ induces a commutative square

■ *f* is excellent if the above square is Cartesian.

- *G* as before. *M* a reductive monoid with $(M^{\times})' = G$.
- The GIT quotient

$$\alpha_M: M \longrightarrow \mathbf{A}_M := M /\!\!/ (G \times G)$$

is called the abelianization of *M*.

- \mathbf{A}_M is a toric variety for the torus $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G)$.
- *M* is very flat if α_M is dominant, flat and with integral fibres.

- *G* as before. *M* a reductive monoid with $(M^{\times})' = G$.
- The GIT quotient

$$\alpha_M: M \longrightarrow \mathbf{A}_M := M /\!\!/ (G \times G)$$

is called the abelianization of *M*.

- \mathbf{A}_M is a toric variety for the torus $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G)$.
- *M* is very flat if α_M is dominant, flat and with integral fibres.

The enveloping monoid

The category of very flat reductive monoids M with $(M^{\times})' = G$ and excellent morphisms has a versal object Env(G), called the (Vinberg) enveloping monoid of G.

The enveloping monoid

• *G* as before. $G_+ := (T \times G)/Z_G$.

- $\omega_1, \ldots, \omega_r$ fundamental dominant weights, $\alpha_1, \ldots, \alpha_r$ simple roots.
- Env(*G*) is defined as the closure of the image of

$$G_{+} \longrightarrow \bigoplus_{i=1}^{r} (\operatorname{End}(V_{i}) \times \mathbb{A}^{1})$$
$$[t,g] \longmapsto (t^{w_{0}(\omega_{i})} \rho_{i}(g), t^{\alpha_{i}})_{i=1}^{r},$$

for $\rho_i : G \to GL(V_i)$ the irrep with highest weight ω_i and w_0 the longest element of *W*.

The enveloping monoid

• *G* as before. $G_+ := (T \times G)/Z_G$.

- $\omega_1, \ldots, \omega_r$ fundamental dominant weights, $\alpha_1, \ldots, \alpha_r$ simple roots.
- Env(G) is defined as the closure of the image of

$$G_{+} \longrightarrow \bigoplus_{i=1}^{r} (\operatorname{End}(V_{i}) \times \mathbb{A}^{1})$$
$$[t,g] \longmapsto (t^{w_{0}(\omega_{i})} \rho_{i}(g), t^{\alpha_{i}})_{i=1}^{r},$$

for $\rho_i : G \to \operatorname{GL}(V_i)$ the irrep with highest weight ω_i and w_0 the longest element of W. **a** $Z^0_{M^{\times}}/(Z^0_{M^{\times}} \cap G) = T/Z_G = T^{\operatorname{ad}}$. **b** $A_{\operatorname{Env}(G)} = \operatorname{Spec}(k[e^{\alpha_i} : i = 1, \dots, r]) \cong \mathbb{A}^r$. (X*(T^{ad}) = root lattice). **b** $\alpha_{\operatorname{Env}(G)}([t, g]) = (t^{\alpha_1}, \dots, t^{\alpha_r})$.

The multiplicative Hitchin map of a very flat monoid

Invariant theory for the monoid

G as before. *M* very flat reductive monoid with $(M^{\times})' = G$.

 $M /\!\!/ G = (G /\!\!/ G) \times \mathbf{A}_M.$

The multiplicative Hitchin map of a very flat monoid

Invariant theory for the monoid

G as before. *M* very flat reductive monoid with $(M^{\times})' = G$.

 $M /\!\!/ G = (G /\!\!/ G) \times \mathbf{A}_M.$

The multiplicative Hitchin map associated to M

Let X as before. We obtain a Hitchin-type fibration

$$\mathcal{M}_X(M) \xrightarrow{h_M} \mathcal{B}_X(M) \longrightarrow \mathcal{A}_X(M) \longrightarrow \operatorname{Bun}_{Z_{M^{\times}}}(X)$$

by applying the functor Map(X, -) to the natural sequence of stacky quotients

$$[M/(G \times Z_{M^{\times}})] \longrightarrow [(M / G)/Z_{M^{\times}}] \longrightarrow [\mathbf{A}_M/Z_{M^{\times}}] \longrightarrow \mathbb{B}Z_{M^{\times}}.$$

Let
$$\lambda = (\lambda_1, \dots, \lambda_n) \in (X_*(T)_+)^n \subset (X_*(T^{ad})_+)^n$$
. This defines
 $\lambda : \mathbb{G}_m^n \longrightarrow T^{ad}$ $(z_1, \dots, z_n) \longmapsto z_1^{\lambda_1} \cdots z_n^{\lambda_n}$,

which extends to a map $\lambda : \mathbb{A}^n \to \mathbf{A}_{\mathsf{Env}(G)}$.

Let $\lambda = (\lambda_1, \dots, \lambda_n) \in (X_*(T)_+)^n \subset (X_*(T^{ad})_+)^n$. This defines

$$oldsymbol{\lambda}:\mathbb{G}_m^n\longrightarrow T^{\mathrm{ad}}$$

 $(z_1,\ldots,z_n)\longmapsto z_1^{\lambda_1}\cdots z_n^{\lambda_n}$

which extends to a map $\lambda : \mathbb{A}^n \to \mathbf{A}_{Env(G)}$. Consider $M_{\lambda} = Env(G) \times_{\lambda} \mathbb{A}^n$ the corresponding very flat monoid. Note that $\mathbf{A}_{M_{\lambda}} = \mathbb{A}^n$, so $\mathbb{B}Z_{M_{\lambda}^{\times}} = \operatorname{Pic}(X)^n$, and for any tuple of line bundles $\mathbf{L} = (L_1, \ldots, L_n)$,

$$\mathcal{A}_X(M_{\boldsymbol{\lambda}})_{\boldsymbol{L}} = \bigoplus_{i=1}^n H^0(X, L_i).$$

Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ and $D = (D_1, \ldots, D_n) \in X_d$. Since each D_i is effective, there exists a canonical section s_i of each $\mathcal{O}_X(D_i)$. Let us denote $\mathcal{O}_X(D) = \bigoplus_{i=1}^n \mathcal{O}_X(D_i)$ and $s = (s_1, \ldots, s_n)$.

Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ and $D = (D_1, \ldots, D_n) \in X_d$. Since each D_i is effective, there exists a canonical section s_i of each $\mathcal{O}_X(D_i)$. Let us denote $\mathcal{O}_X(D) = \bigoplus_{i=1}^n \mathcal{O}_X(D_i)$ and $s = (s_1, \ldots, s_n)$.

Theorem (Bouthier, J. Chi, G. Wang)

The map $X_d \to \mathcal{A}_X(M_\lambda)$, $\mathbf{D} \mapsto (\mathcal{O}_X(\mathbf{D}), \mathbf{s})$ induces the following diagram, where all squares are *Cartesian*

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

• *G* as before. An involution θ of *G* is an order 2 automorphism of *G*.

- *G* as before. An involution θ of *G* is an order 2 automorphism of *G*.
- $\blacksquare \ G^{\theta} := \{g \in G : \theta(g) = g\}, \ G^{\theta} = (G^{\theta})^0, \ G_{\theta} := \{g \in G : \theta(g)g^{-1} \in Z_G\} = N_G(G^{\theta}).$
- **Cartan decomposition**: $\mathfrak{g} = \mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).

G as before. An involution θ of *G* is an order 2 automorphism of *G*.

- **Cartan decomposition:** $\mathfrak{g} = \mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).
- *X* as before.

Stack of (G, θ) -Higgs bundles

$$\mathsf{Higgs}_X(G,\theta) = \left\{ (E,\varphi) : E \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in H^0(X, E(\mathfrak{m}) \otimes K_X) \right\}.$$

• *G* as before. An involution θ of *G* is an order 2 automorphism of *G*.

- **Cartan decomposition:** $\mathfrak{g} = \mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).
- *X* as before.

Stack of (G, θ) -Higgs bundles

$$\mathsf{Higgs}_X(G,\theta) = \left\{ (E,\varphi) : E \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in H^0(X, E(\mathfrak{m}) \otimes K_X) \right\}.$$

• Our motivation: Study the multiplicative analogue.

(Additive) Higgs bundles and involutions. Motivation

Stack of (G, θ) -Higgs bundles

$$\mathsf{Higgs}_X(G,\theta) = \left\{ (E,\varphi) : E \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in H^0(X, E(\mathfrak{m}) \otimes K_X) \right\}.$$

- (For $k = \mathbb{C}$). Under the nonabelian Hodge correspondence, (polystable) (G, θ) -Higgs bundles yield representations of $\pi_1(X^{an})$ on the real form $G_{\mathbb{R}}$ of G determined by θ .
- Higgs_X(G, θ) appears as fixed points of

$$\begin{aligned} \operatorname{Higgs}_X(G) &\longrightarrow \operatorname{Higgs}_X(G) \\ (E,\varphi) &\longmapsto (\theta(E), -\theta(\varphi)). \end{aligned}$$

■ Higgs_X(G, θ) is the support of a BAA-brane of Higgs_X(G), conjecturally mirror to the BBB-brane inside Higgs_X(^LG) given by the Nadler dual group of (G, θ).
Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

Root data of (G, θ)

- (G, θ) as before. A torus $A \subset G$ is θ -split if $\theta(a) = a^{-1}$ for all $a \in A$.
- $A \subset G$ maximal θ -split. If $A \subset T$ maximal torus, T is θ -stable ($\theta(T) \subset T$).

Root data of $({\it G}, \theta)$

- (G, θ) as before. A torus $A \subset G$ is θ -split if $\theta(a) = a^{-1}$ for all $a \in A$.
- $A \subset G$ maximal θ -split. If $A \subset T$ maximal torus, T is θ -stable ($\theta(T) \subset T$).
- θ acts on the roots Φ_T .
- If $\Phi_T^{\theta} = \emptyset$ we say that θ is quasi-split.

Restricted root system

$$\Phi_{\theta} := \left\{ \bar{\alpha} = \frac{\alpha - \theta(\alpha)}{2} \in \mathsf{X}^*(A) \otimes \mathbb{R} : \alpha \in \Phi_T \setminus \Phi_T^{\theta} \right\}.$$

This is a (possibly non-reduced) root system in $X^*(A) \otimes \mathbb{R}$ with Weyl group $W_{\theta} = N_G(A)/Z_G(A)$ the little Weyl group.

Root data of $({\it G}, \theta)$

- (G, θ) as before. A torus $A \subset G$ is θ -split if $\theta(a) = a^{-1}$ for all $a \in A$.
- $A \subset G$ maximal θ -split. If $A \subset T$ maximal torus, T is θ -stable ($\theta(T) \subset T$).
- θ acts on the roots Φ_T .
- If $\Phi_T^{\theta} = \emptyset$ we say that θ is quasi-split.

Restricted root system

$$\Phi_{\theta} := \left\{ \bar{\alpha} = \frac{\alpha - \theta(\alpha)}{2} \in \mathsf{X}^*(A) \otimes \mathbb{R} : \alpha \in \Phi_T \setminus \Phi_T^{\theta} \right\}.$$

This is a (possibly non-reduced) root system in $X^*(A) \otimes \mathbb{R}$ with Weyl group $W_{\theta} = N_G(A)/Z_G(A)$ the little Weyl group.

- Root lattice: $R(\Phi_{\theta}) = X^*(A/(A \cap G_{\theta})).$
- Weight lattice: $\mathsf{P}(\Phi_{\theta}) = \mathsf{X}^*(A/(A \cap G^{\theta})) = \mathbb{Z}\langle \varpi_1, \dots, \varpi_l \rangle.$

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

Multiplicative (G, θ) -Higgs bundles

Stack of multiplicative (G, θ) -Higgs bundles

 $\mathcal{M}_{\boldsymbol{d}}(G,\theta) = \big\{ (\boldsymbol{D}, E, \varphi) : \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in \Gamma(X \setminus |D|, E(G/G^{\theta})) \big\}.$

Multiplicative (G, θ) -Higgs bundles

Stack of multiplicative (G, θ) -Higgs bundles

 $\mathcal{M}_{\boldsymbol{d}}(G,\theta) = \big\{ (\boldsymbol{D}, E, \varphi) : \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in \Gamma(X \setminus |D|, E(G/G^{\theta})) \big\}.$

• For $x \in |D|$, we get a local invariant $\operatorname{inv}_x(\varphi) \in (G/G^{\theta})(K)/G(\mathcal{O})$.

"Cartan decomposition" (Uzawa, Luna-Vust, Nadler)

$$(G/G^{\theta})(K)/G(\mathcal{O}) = \mathsf{X}_*(A/(A \cap G^{\theta}))_-,$$

for $A \subset T$ a maximal θ -split torus.

Multiplicative (G, θ) -Higgs bundles

Stack of multiplicative (G, θ) -Higgs bundles

 $\mathcal{M}_{\boldsymbol{d}}(G,\theta) = \big\{ (\boldsymbol{D}, \boldsymbol{E}, \varphi) : \boldsymbol{D} \in X_{\boldsymbol{d}}, \boldsymbol{E} \in \mathsf{Bun}_{G^{\theta}}(X), \varphi \in \Gamma(X \setminus |\boldsymbol{D}|, \boldsymbol{E}(G/G^{\theta})) \big\}.$

• For $x \in |D|$, we get a local invariant $\operatorname{inv}_x(\varphi) \in (G/G^{\theta})(K)/G(\mathcal{O})$.

"Cartan decomposition" (Uzawa, Luna-Vust, Nadler)

$$(G/G^{\theta})(K)/G(\mathcal{O}) = \mathsf{X}_*(A/(A \cap G^{\theta}))_-,$$

for $A \subset T$ a maximal θ -split torus.

•
$$\boldsymbol{\lambda} = (\lambda_1, \ldots, \lambda_n) \in (\mathbf{X}_*(A/(A \cap G^{\theta}))_-)^n.$$

Stack of multiplicative (G, θ) -Higgs bundles of type λ

 $\mathcal{M}_{\boldsymbol{d},\boldsymbol{\lambda}}(G,\theta) = \big\{ (\boldsymbol{D}, \boldsymbol{E}, \varphi) \in \mathcal{M}_{\boldsymbol{d},\boldsymbol{\lambda}}(G,\theta) : \mathsf{inv}(\varphi) \leq \boldsymbol{\lambda} \cdot \boldsymbol{D} \big\}.$

The multiplicative Hitchin map

"Chevalley restriction" (Richardson)

$$k[G/G^{\theta}]^{G^{\theta}} \cong k[A/(A \cap G^{\theta})]^{W_{\theta}}$$

Moreover, there are G^{θ} -invariant functions b_1, \ldots, b_l with highest weights $\varpi_1, \ldots, \varpi_l$ such that

$$k[G/G^{\theta}]^{G^{\theta}} = k[b_1,\ldots,b_l].$$

The multiplicative Hitchin map

"Chevalley restriction" (Richardson)

$$k[G/G^{\theta}]^{G^{\theta}} \cong k[A/(A \cap G^{\theta})]^{W_{\theta}}$$

Moreover, there are G^{θ} -invariant functions b_1, \ldots, b_l with highest weights $\varpi_1, \ldots, \varpi_l$ such that

$$k[G/G^{ heta}]^{G^{ heta}}=k[b_1,\ldots,b_l].$$

Multiplicative Hitchin map

Let $\mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G,\theta) \to X_{\boldsymbol{d}}$ with $\mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G)_{\boldsymbol{D}} := \bigoplus_{i=1}^{l} H^{0}(X, \mathcal{O}_{X}(\langle \varpi_{i}, \boldsymbol{\lambda} \cdot \boldsymbol{D} \rangle)).$

$$h_{\boldsymbol{d},\boldsymbol{\lambda}}: \mathcal{M}_{\boldsymbol{d},\boldsymbol{\lambda}}(G,\theta) \longrightarrow \mathcal{B}_{\boldsymbol{d},\boldsymbol{\lambda}}(G,\theta)$$
$$(\boldsymbol{D}, \boldsymbol{E}, \varphi) \longmapsto (b_1(\varphi), \dots, b_l(\varphi))$$

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

Symmetric varieties

- Let G_1 be any reductive group.
- A symmetric G_1 -variety is an algebraic homogeneous space of the form G_1/H_1 with

$$(G_1^{\vartheta})^0 \subset H_1 \subset (G_1)_{\vartheta},$$

for some involution $\vartheta \in \operatorname{Aut}_2(G_1)$.

- Let G_1 be any reductive group.
- A symmetric G_1 -variety is an algebraic homogeneous space of the form G_1/H_1 with

$$(G_1^{\vartheta})^0 \subset H_1 \subset (G_1)_{\vartheta},$$

for some involution $\vartheta \in \operatorname{Aut}_2(G_1)$.

Any symmetric G_1 -variety is of the form $(G'_1 \times Z)/H$, for some torus Z and $(G'_1 \times Z)_0^{\vartheta} \subset H \subset (G'_1 \times Z)_{\vartheta}$, where

$$\begin{split} \vartheta : G_1' \times Z & \longrightarrow G_1' \times Z \\ (g,z) & \longmapsto (\theta(g),z^{-1}) \end{split}$$

,

for $\theta \in \text{Aut}_2(G'_1)$. The symmetric G'_1 -variety $G'_1/(H \cap (G'_1 \times \{1\}))$ is called the semisimple part of $(G'_1 \times Z)/H$.

Symmetric embeddings

• A symmetric G_1 -embedding is a normal G_1 -variety Σ with a G_1 -equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_1 -variety. Σ is simple if it has only one closed G_1 -orbit.

Symmetric embeddings

- A symmetric G_1 -embedding is a normal G_1 -variety Σ with a G_1 -equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_1 -variety. Σ is simple if it has only one closed G_1 -orbit.
- Recall that O_{Σ} is of the form $(G'_1 \times Z)/H$. We have the following tori

$$Z_{\Sigma}=Z/\left\{z\in Z\colon z^2=1
ight\} \ \ ext{and} \ \ A_{\Sigma}=Z/\operatorname{pr}_2(H).$$

- The abelianization of Σ is the GIT quotient $\alpha_{\Sigma} : \Sigma \to \mathbf{A}_{\Sigma} := \Sigma /\!\!/ G'_1$.
- **A** $_{\Sigma}$ is a toric variety for the torus A_{Σ} .
- Σ affine and simple is very flat if α_{Σ} is dominant, flat and with integral fibres.

Symmetric embeddings

- A symmetric G_1 -embedding is a normal G_1 -variety Σ with a G_1 -equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_1 -variety. Σ is simple if it has only one closed G_1 -orbit.
- Recall that O_{Σ} is of the form $(G'_1 \times Z)/H$. We have the following tori

$$Z_{\Sigma} = Z/\left\{z \in Z : z^2 = 1\right\} \quad \text{and} \quad A_{\Sigma} = Z/\mathrm{pr}_2(H).$$

- The abelianization of Σ is the GIT quotient $\alpha_{\Sigma} : \Sigma \to \mathbf{A}_{\Sigma} := \Sigma /\!\!/ G'_1$.
- **A** $_{\Sigma}$ is a toric variety for the torus A_{Σ} .
- Σ affine and simple is very flat if α_{Σ} is dominant, flat and with integral fibres.
- $(G, \theta), T \subset G \text{ and } A \subset T \text{ as before.}$

The enveloping embedding

The category of very flat symmetric embeddings Σ such that the semisimple part of O_{Σ} is G/G^{θ} and excellent morphisms has a versal object $\text{Env}(G/G^{\theta})$, called the (Guay) enveloping embedding of G/G^{θ} .

The enveloping embedding

$$(G/G^{\theta})_{+} \longrightarrow \bigoplus_{i=1}^{l} (\mathbb{A}^{m_{i}} \times \mathbb{A}^{1})$$
$$[a,g] \longmapsto (a^{w_{0}(\varpi_{i})}(f_{i}^{1}(g), \dots, f_{i}^{m_{i}}(g)), a^{-\bar{\alpha}_{i}})_{i=1}^{l},$$

where $f_i^1, \ldots, f_i^{m_i}$ is a basis of the *G*-submodule $k[G/G^{\theta}]_{\varpi_i}$ as a *k*-vector space.

The enveloping embedding

$$(G/G^{\theta})_{+} \longrightarrow \bigoplus_{i=1}^{l} (\mathbb{A}^{m_{i}} \times \mathbb{A}^{1})$$
$$[a,g] \longmapsto (a^{w_{0}(\varpi_{i})}(f_{i}^{1}(g), \dots, f_{i}^{m_{i}}(g)), a^{-\bar{\alpha}_{i}})_{i=1}^{l},$$

where $f_i^1, \ldots, f_i^{m_i}$ is a basis of the *G*-submodule $k[G/G^{\theta}]_{\varpi_i}$ as a *k*-vector space. $Z_{\text{Env}(G/G^{\theta})} = A/(A \cap G^{\theta}), A_{\text{Env}(G/G^{\theta})} = A/(A \cap G_{\theta}).$ $A_{\text{Env}(G/G^{\theta})} = \text{Spec}(k[e^{-\bar{\alpha}_i} : i = 1, \ldots, l]).$

Guillermo Gallego (UCM - ICMAT)

The multiplicative Hitchin map of a very flat symmetric embedding

Invariant theory for the symmetric embedding

 (G, θ) as before. Σ very flat symmetric embedding such that the semisimple part of O_{Σ} is G/G^{θ} .

$$\Sigma \not \parallel G^{\theta} = ((G/G^{\theta}) \not \parallel G^{\theta}) \times \mathbf{A}_{\Sigma}.$$

The multiplicative Hitchin map of a very flat symmetric embedding

Invariant theory for the symmetric embedding

 (G, θ) as before. Σ very flat symmetric embedding such that the semisimple part of O_{Σ} is G/G^{θ} .

$$\Sigma /\!\!/ G^{\theta} = ((G/G^{\theta}) /\!\!/ G^{\theta}) \times \mathbf{A}_{\Sigma}.$$

The multiplicative Hitchin map associated to Σ

Let X as before. We obtain a Hitchin-type fibration

$$\mathcal{M}_X(\Sigma) \xrightarrow{h_{\Sigma}} \mathcal{B}_X(\Sigma) \longrightarrow \mathcal{A}_X(\Sigma) \longrightarrow \mathsf{Bun}_{Z_{\Sigma}}(X)$$

by applying the functor Map(X, -) to the natural sequence of stacky quotients

$$[\Sigma/(G^{\theta} \times Z_{\Sigma})] \longrightarrow [(\Sigma /\!\!/ G^{\theta})/Z_{\Sigma}] \longrightarrow [\mathbf{A}_{\Sigma}/Z_{\Sigma}] \longrightarrow \mathbb{B}Z_{\Sigma}.$$

Comparing the two pictures

Let $\lambda = (\lambda_1, \dots, \lambda_n) \in (X_*(A/(A \cap G^{\theta}))_-)^n \subset (X_*(A/(A \cap G_{\theta}))_-)^n$. This defines $\lambda : \mathbb{G}_m^n \longrightarrow A/(A \cap G_{\theta})$ $(z_1, \dots, z_n) \longmapsto z_1^{\lambda_1} \cdots z_n^{\lambda_n},$

which extends to a map $\lambda : \mathbb{A}^n \to \mathbf{A}_{\operatorname{Env}(G/G^{\theta})}$.

Let $\lambda = (\lambda_1, \dots, \lambda_n) \in (X_*(A/(A \cap G^{\theta}))_-)^n \subset (X_*(A/(A \cap G_{\theta}))_-)^n$. This defines

$$oldsymbol{\lambda}:\mathbb{G}_m^n\longrightarrow A/(A\cap G_ heta)$$

 $(z_1,\ldots,z_n)\longmapsto z_1^{\lambda_1}\cdots z_n^{\lambda_n},$

which extends to a map $\lambda : \mathbb{A}^n \to \mathbf{A}_{\mathsf{Env}(G/G^{\theta})}$.

Consider $\Sigma_{\lambda} = \text{Env}(G/G^{\theta}) \times_{\lambda} \mathbb{A}^n$ the corresponding very flat symmetric embedding. Note that $\mathbf{A}_{\Sigma_{\lambda}} = \mathbb{A}^n$, so $\mathbb{B}Z_{\Sigma_{\lambda}} = \text{Pic}(X)^n$, and for any tuple of line bundles $\mathbf{L} = (L_1, \ldots, L_n)$,

$$\mathcal{A}_X(\Sigma_{\boldsymbol{\lambda}})_{\boldsymbol{L}} = \bigoplus_{i=1}^n H^0(X, L_i).$$

Comparing the two pictures

Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ and $D = (D_1, \ldots, D_n) \in X_d$. Since each D_i is effective, there exists a canonical section s_i of each $\mathcal{O}_X(D_i)$. Let us denote $\mathcal{O}_X(D) = \bigoplus_{i=1}^n \mathcal{O}_X(D_i)$ and $s = (s_1, \ldots, s_n)$.

Comparing the two pictures

Let $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ and $D = (D_1, \ldots, D_n) \in X_d$. Since each D_i is effective, there exists a canonical section s_i of each $\mathcal{O}_X(D_i)$. Let us denote $\mathcal{O}_X(D) = \bigoplus_{i=1}^n \mathcal{O}_X(D_i)$ and $s = (s_1, \ldots, s_n)$.

Theorem (G–García-Prada)

The map $X_d \to \mathcal{A}_X(\Sigma_{\lambda})$, $\mathbf{D} \mapsto (\mathcal{O}_X(\mathbf{D}), \mathbf{s})$ induces the following diagram, where all squares are *Cartesian*

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions

Involutions on multiplicative Higgs bundles

• Consider the natural map $\pi : \operatorname{Aut}_2(G) \to \operatorname{Out}_2(G) = \operatorname{Aut}_2(G)/\operatorname{Int}(G)$.

The involutions

Given any $a \in \text{Out}_2(G)$ and $\varepsilon = \pm 1$, we can consider the involution

 $\iota_a^{\varepsilon}: (E, \varphi) \longmapsto (\theta(E), \theta(\varphi)^{\varepsilon}),$

for any $\theta \in \pi^{-1}(a)$.

Goal: Study the fixed points $((E, \varphi) \cong (\theta(E), \theta(\varphi)^{\varepsilon}))$.

Involutions on multiplicative Higgs bundles

• Consider the natural map $\pi : \operatorname{Aut}_2(G) \to \operatorname{Out}_2(G) = \operatorname{Aut}_2(G)/\operatorname{Int}(G)$.

The involutions

Given any $a \in \text{Out}_2(G)$ and $\varepsilon = \pm 1$, we can consider the involution

 $\iota_a^{\varepsilon}: (E, \varphi) \longmapsto (\theta(E), \theta(\varphi)^{\varepsilon}),$

for any $\theta \in \pi^{-1}(a)$.

- **Goal:** Study the fixed points $((E, \varphi) \cong (\theta(E), \theta(\varphi)^{\varepsilon}))$.
- Clearly, for any $\theta \in \pi^{-1}(a)$, multiplicative G^{θ} -Higgs bundles are fixed under ι_a^+ and multiplicative (G, θ) -Higgs bundles are fixed under ι_a^- .

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ -twisted conjugation

$$G \times G \longrightarrow G$$

(g, s) $\longmapsto g * s = gs\theta(g)^{-1}.$

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ -twisted conjugation

 $G \times G \longrightarrow G$ (g, s) $\longmapsto g * s = gs\theta(g)^{-1}.$

• The orbits are homogeneous spaces of the form $G * s \cong G/G^{\theta_s}$, for $\theta_s = \text{Int}_s \circ \theta$.

- θ_s is an involution if and only if $s \in S_{\theta} = \{s \in G : s\theta(s) \in Z_G\}$.
- * can be extended to an action of $G \times Z_G$, which preserves S_{θ} .

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ -twisted conjugation

 $G \times G \longrightarrow G$ (g, s) $\longmapsto g * s = gs\theta(g)^{-1}.$

- The orbits are homogeneous spaces of the form $G * s \cong G/G^{\theta_s}$, for $\theta_s = \text{Int}_s \circ \theta$.
- θ_s is an involution if and only if $s \in S_{\theta} = \{s \in G : s\theta(s) \in Z_G\}$.
- * can be extended to an action of $G \times Z_G$, which preserves S_{θ} .
- G/G^{θ} and $G/G^{\theta'}$ can be identified if θ and θ' are related by

 $\theta \sim \theta'$ if and only if there exists $\alpha \in Int(G)$ such that $\theta' = \alpha \circ \theta \circ \alpha^{-1}$

• $\pi : \operatorname{Aut}_2(G) \to \operatorname{Out}_2(G)$ descends to the clique map cl : $\operatorname{Aut}_2(G) / \sim \to \operatorname{Out}_2(G)$ and

$$\operatorname{cl}^{-1}(a) \cong S_{\theta}/(G \times Z_G) = H^1_{\theta}(\mathbb{Z}/2, G^{\operatorname{ad}}),$$

for any $\theta \in \pi^{-1}(a)$.

The fixed points

Theorem (G-García-Prada)

Let $a \in \text{Out}_2(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_a^{\varepsilon}$, then:

1 There exists a unique $[\theta] \in cl^{-1}(a)$ such that there is a reduction of structure group of *E* to a G^{θ} -bundle $E_{\theta} \subset E$.

2 If we consider the corresponding G-equivariant map $f_{\varphi} : E|_{X \setminus |D|} \to G$, then $f_{\varphi}|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon = 1$, and in $S^{\theta} := \{s \in G : s = \theta(s)^{-1}\}$ if $\varepsilon = -1$.

More precisely, when $\varepsilon = -1$, $f_{\varphi}|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ -twisted conjugation.

The fixed points

Theorem (G-García-Prada)

Let $a \in \text{Out}_2(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_a^{\varepsilon}$, then:

1 There exists a unique $[\theta] \in cl^{-1}(a)$ such that there is a reduction of structure group of *E* to a G^{θ} -bundle $E_{\theta} \subset E$.

2 If we consider the corresponding G-equivariant map $f_{\varphi} : E|_{X \setminus |D|} \to G$, then $f_{\varphi}|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon = 1$, and in $S^{\theta} := \{s \in G : s = \theta(s)^{-1}\}$ if $\varepsilon = -1$.

More precisely, when $\varepsilon = -1$, $f_{\varphi}|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ -twisted conjugation.

Proof idea

Pick $\theta_0 \in \pi^{-1}(a)$ and $\psi : (E, \varphi) \to (E, \varphi)$ a θ_0 -twisted automorphism. Then we get $f_{\psi} : E \to S_{\theta_0}$ *G*-equivariant, so it maps to a single *G*-orbit G/G^{θ} . This gives the reduction to G^{θ} .

The fixed points

Theorem (G-García-Prada)

Let $a \in \text{Out}_2(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_a^{\varepsilon}$, then:

1 There exists a unique $[\theta] \in cl^{-1}(a)$ such that there is a reduction of structure group of *E* to a G^{θ} -bundle $E_{\theta} \subset E$.

2 If we consider the corresponding G-equivariant map $f_{\varphi} : E|_{X \setminus |D|} \to G$, then $f_{\varphi}|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon = 1$, and in $S^{\theta} := \{s \in G : s = \theta(s)^{-1}\}$ if $\varepsilon = -1$.

More precisely, when $\varepsilon = -1$, $f_{\varphi}|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ -twisted conjugation.

Proof idea

Pick $\theta_0 \in \pi^{-1}(a)$ and $\psi : (E, \varphi) \to (E, \varphi)$ a θ_0 -twisted automorphism. Then we get $f_{\psi} : E \to S_{\theta_0}$ *G*-equivariant, so it maps to a single *G*-orbit G/G^{θ} . This gives the reduction to G^{θ} . By assumption we have $f_{\psi}(e)\theta_0(f_{\varphi}(e))f_{\psi}(e)^{-1} = f_{\varphi}(e)^{\varepsilon}$ so, for $e \in E_{\theta}$, we get $\theta(f_{\varphi}(e)) = f_{\varphi}(e)^{\varepsilon}$.

- (G, θ) as above.
- Assume that X is Calabi–Yau (so $X = \mathbb{A}^1$, \mathbb{G}_m or an elliptic curve).
- Hurtubise and Markman define an algebraic symplectic structure Ω in the moduli space of simple multiplicative Higgs bundles with fixed invariant.

- (G, θ) as above.
- Assume that X is Calabi–Yau (so $X = \mathbb{A}^1$, \mathbb{G}_m or an elliptic curve).
- Hurtubise and Markman define an algebraic symplectic structure Ω in the moduli space of simple multiplicative Higgs bundles with fixed invariant.

Theorem (G-García-Prada)

For any $a \in \text{Out}_2(G)$,

$$(\iota_a^\varepsilon)^*\Omega = \varepsilon\Omega.$$

Therefore, the fixed points of ι_a^+ form an algebraic symplectic submanifold and the fixed points of ι_a^- form an algebraic Lagrangian submanifold.

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles
- 9 Further directions
The Charbonneau-Hurtubise correspondence

- Assume $k = \mathbb{C}$ and work in the analytic category.
- Multiplicative *G*-Higgs bundles on *X* are equivalent to mini-holomorphic *G*-bundles on $X \times S^1$ with Dirac-type singularities.
- Let $\mathbb{E} \to X \times S^1$ be such a mini-holomorphic bundle.

- Assume $k = \mathbb{C}$ and work in the analytic category.
- Multiplicative *G*-Higgs bundles on *X* are equivalent to mini-holomorphic *G*-bundles on $X \times S^1$ with Dirac-type singularities.
- Let $\mathbb{E} \to X \times S^1$ be such a mini-holomorphic bundle.
- Given a reduction of structure group h from \mathbb{E} to a maximal compact subgroup $K \subset G$ (a "Hermitian metric"), there is an associated Chern pair (A_h, ϕ_h) formed by a K-connection A_h and a "Higgs field" ϕ_h .
- If ad-hoc stability conditions are satisfied, one can use Donaldson–Uhlenbeck–Yau on X × S¹ × S¹ to obtain a reduction h such that the corresponding pair (A_h, φ_h) satisfies the Hermitian–Einstein–Bogomolny equation

$$F_{A_h} - iC\omega_X = *d_{A_h}\phi_h.$$

Involutions of mini-holomorphic bundles

If (E, φ) is obtained by taking scattering of some mini-holomorphic bundle E, then (E, φ⁻¹) is obtained by scattering in the opposite direction, thus it corresponds to ε^{*}E, for

$$\epsilon : S^1 \longrightarrow S^1$$

 $e^{it} \longmapsto e^{i(2\pi - t)}.$

Thus, in terms of mini-holomorphic bundles, we get the involutions

$$\iota_a^+(\mathbb{E}) = \theta(\mathbb{E})$$
$$\iota_a^-(\mathbb{E}) = \epsilon^* \theta(\mathbb{E}).$$

Involutions of mini-holomorphic bundles

If (E, φ) is obtained by taking scattering of some mini-holomorphic bundle E, then (E, φ⁻¹) is obtained by scattering in the opposite direction, thus it corresponds to ε^{*}E, for

$$\epsilon: S^1 \longrightarrow S^1$$

 $e^{it} \longmapsto e^{i(2\pi - t)}.$

Thus, in terms of mini-holomorphic bundles, we get the involutions

$$\iota_a^+(\mathbb{E}) = \theta(\mathbb{E})$$
$$\iota_a^-(\mathbb{E}) = \epsilon^* \theta(\mathbb{E}).$$

The description for monopoles should follow from here (future work with García-Prada).

Contents

- 1 The multiplicative Hitchin fibration
- 2 The monoid approach
- 3 Higgs bundles and involutions
- 4 The root data of an involution
- 5 Multiplicative Higgs bundles associated to an involution
- 6 The symmetric embedding approach
- 7 Fixed points and the symplectic structure
- 8 Multiplicative Higgs bundles and monopoles

9 Further directions

Monopoles and involutions (forthcoming work with García-Prada).

- Monopoles and involutions (forthcoming work with García-Prada).
- Langlands duality and mirror symmetry (work in progress with Morrissey).

- Monopoles and involutions (forthcoming work with García-Prada).
- Langlands duality and mirror symmetry (work in progress with Morrissey).
- Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.

- Monopoles and involutions (forthcoming work with García-Prada).
- Langlands duality and mirror symmetry (work in progress with Morrissey).
- Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.
- Generalization to spherical varieties? And beyond?

- Monopoles and involutions (forthcoming work with García-Prada).
- Langlands duality and mirror symmetry (work in progress with Morrissey).
- Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.
- Generalization to spherical varieties? And beyond?
- Applications to relative Langlands?

Thank you