Multiplicative Higgs bundles and involutions

Guillermo Gallego
Universidad Complutense de Madrid - Instituto de Ciencias Matemáticas

ICMAT

Workshop on the Hitchin system, Langlands duality and mirror symmetry 27th April 2023

Joint work with Oscar García-Prada (arXiv:2304.02553).
This work is supported by the UCM under the contract CT63/19-CT64/19

Contents

1 The multiplicative Hitchin fibration
2 The monoid approach
3 Higgs bundles and involutions
a The root data of an involution
5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
7 Fixed points and the symplectic structure
(es Multiplicative Higes bundles and monopoles
9 Further directions

Multiplicative Higgs bundles

- k - algebraically closed field of char. 0

■ G - semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus

- X - smooth algebraic curve over k

Multiplicative Higgs bundles

■ k - algebraically closed field of char. 0
■ G - semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus

- X - smooth algebraic curve over k

■ $d \in \mathbb{N}, X_{d}=X^{d} / \mathfrak{S}_{d}$ (elements are effective divisors of deg. d)
■ $n \in \mathbb{N}, \boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}, X_{\boldsymbol{d}}=X_{d_{1}} \times \cdots \times X_{d_{n}}$.
■ $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{d}, D=D_{1}+\cdots+D_{n},|D|$ support of D.

Multiplicative Higgs bundles

- k - algebraically closed field of char. 0

■ G - semisimple simply-connected algebraic group over $k, B \subset G$ Borel subgroup, $T \subset B$ maximal torus

- X - smooth algebraic curve over k

■ $d \in \mathbb{N}, X_{d}=X^{d} / \mathfrak{S}_{d}$ (elements are effective divisors of deg. d)
■ $n \in \mathbb{N}, \boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}, X_{\boldsymbol{d}}=X_{d_{1}} \times \cdots \times X_{d_{n}}$.
■ $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{\boldsymbol{d}}, D=D_{1}+\cdots+D_{n},|D|$ support of D.

Stack of multiplicative G-Higgs bundles

$$
\mathcal{M}_{\boldsymbol{d}}(G)=\left\{(\boldsymbol{D}, E, \varphi): \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \operatorname{Bun}_{G}(X), \varphi \in \Gamma(X \backslash|D|, E(G))\right\}
$$

The invariant

■ Want a finite-type stack? Fix invariant.

The invariant

- Want a finite-type stack? Fix invariant.
- $(\boldsymbol{D}, E, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(G), x \in|D|$.
- z formal variable around $x, \mathcal{O}=k[[z], K=k((z))$.
- $\left.\varphi\right|_{\operatorname{Spec}(K)} \in \Gamma\left(\operatorname{Spec}(K),\left.E\right|_{\operatorname{Spec}^{(\mathcal{O})}}(G)\right)$ induces $\operatorname{inv}_{x}(\varphi) \in G(\mathcal{O}) \backslash G(K) / G(\mathcal{O})$.

The invariant

■ Want a finite-type stack? Fix invariant.
■ $(\boldsymbol{D}, E, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(G), x \in|D|$.
■ z formal variable around $x, \mathcal{O}=k[[z]], K=k((z))$.

Cartan decomposition

$G(\mathcal{O}) \backslash G(K) / G(\mathcal{O}) \cong \mathrm{X}_{*}(T)_{+}$.
$\square \operatorname{inv}(\varphi)$ is a $X_{*}(T)_{+}$-valued divisor.

The invariant

■ Want a finite-type stack? Fix invariant.
■ $(\boldsymbol{D}, E, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(G), x \in|D|$.
■ z formal variable around $x, \mathcal{O}=k[[z]], K=k((z))$.

Cartan decomposition

$G(\mathcal{O}) \backslash G(K) / G(\mathcal{O}) \cong \mathrm{X}_{*}(T)_{+}$.
■ $\operatorname{inv}(\varphi)$ is a $X_{*}(T)_{+}$-valued divisor.
■ $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}(T)_{+}\right)^{n}$.
Stack of multiplicative G-Higgs bundles of type $\boldsymbol{\lambda}$
$\mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G)=\left\{(\boldsymbol{D}, E, \varphi) \in \mathcal{M}_{\boldsymbol{d}}(G): \operatorname{inv}(\varphi) \leq \boldsymbol{\lambda} \cdot \boldsymbol{D}\right\}$.

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$
k[G]^{G} \cong k[T]^{W},
$$

for $W=N_{G}(T) / T$ the Weyl group.

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$
k[G]^{G} \cong k[T]^{W},
$$

for $W=N_{G}(T) / T$ the Weyl group. In particular, there are G-invariant functions b_{1}, \ldots, b_{r} with highest weights $\omega_{1}, \ldots, \omega_{r}$ the fundamental dominant weights of T such that

$$
k[G]^{G}=k\left[b_{1}, \ldots, b_{r}\right] .
$$

The multiplicative Hitchin map

Multiplicative Chevalley restriction

$$
k[G]^{G} \cong k[T]^{W},
$$

for $W=N_{G}(T) / T$ the Weyl group. In particular, there are G-invariant functions b_{1}, \ldots, b_{r} with highest weights $\omega_{1}, \ldots, \omega_{r}$ the fundamental dominant weights of T such that

$$
k[G]^{G}=k\left[b_{1}, \ldots, b_{r}\right] .
$$

Multiplicative Hitchin map

Let $\mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G) \rightarrow X_{\boldsymbol{d}}$ with $\mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G)_{\boldsymbol{D}}:=\bigoplus_{i=1}^{r} H^{0}\left(X, \mathcal{O}_{X}\left(\left\langle\omega_{i}, \boldsymbol{\lambda} \cdot \boldsymbol{D}\right\rangle\right)\right)$.

$$
\begin{aligned}
h_{\boldsymbol{d}, \boldsymbol{\lambda}}: \mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G) & \longrightarrow \mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G) \\
(\boldsymbol{D}, E, \varphi) & \longmapsto\left(b_{1}(\varphi), \ldots, b_{r}(\varphi)\right)
\end{aligned}
$$

The multiplicative Hitchin map. Some history

- Present in the physics literature since the late 90s.

■ 2002. Introduced in the AG literature by Hurtubise-Markman (integrable system).

- 2010. HK-style correspondence of multiplicative $\mathrm{GL}_{r}(\mathbb{C})$-Higgs bundles with "Hermitian-Einstein" singular $U(r)$-monopoles, by Charbonneau-Hurtubise. Extended by Smith (2016) and Mochizuki (2017).
- 2011. Considered by Frenkel-Ngô in the context of geometrization of trace formulas. They suggest the Vinberg monoid approach, further developed in the works of Bouthier (2014-15) and J. Chi (2018).
- 2023. Used in the proof of the Fundamental Lemma for the groups in the thesis of G. Wang.

Contents

1 The multiplicative Hitchin fibration

2 The monoid approach
3 Higgs bundles and involutions
4 The root data of an involution

- Multiplicative 'Higgs bundles associated to an involution

6 The symmetric embedding approach
? Fixed points and the symplectic structure
8 Multiplicative Higgs bundles and monopoles

- Further directions

Reductive monoids

■ A monoid M is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group M^{\times}.
■ An algebraic monoid (over k) is a monoid object in the category of k-schemes. It is reductive if M^{\times}is reductive.

Reductive monoids

■ A monoid M is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group M^{\times}.
■ An algebraic monoid (over k) is a monoid object in the category of k-schemes. It is reductive if M^{\times}is reductive.

- Example:

$$
\begin{aligned}
\text { Mat }_{n \times n}: \mathrm{Alg}_{k} & \longrightarrow \text { Monoids } \\
A & \longmapsto \operatorname{Mat}_{n \times n}(A)
\end{aligned}
$$

is a reductive monoid over k with $\left(\operatorname{Mat}_{n \times n}\right)^{\times}=\mathrm{GL}_{n}$.

Reductive monoids

■ A monoid M is a semigroup (binary operation with associativity) with identity element. Invertible elements form a group M^{\times}.
■ An algebraic monoid (over k) is a monoid object in the category of k-schemes. It is reductive if M^{\times}is reductive.

- Example:

$$
\begin{aligned}
\text { Mat }_{n \times n}: \mathrm{Alg}_{k} & \longrightarrow \text { Monoids } \\
A & \longmapsto \operatorname{Mat}_{n \times n}(A)
\end{aligned}
$$

is a reductive monoid over k with $\left(\operatorname{Mat}_{n \times n}\right)^{\times}=\mathrm{GL}_{n}$.
■ An algebraic monoid can also be thought as a ($M^{\times} \times M^{\times}$)-equivariant open embedding of its unit group M^{\times}. ("Nonabelian toric varieties").

Abelianization

■ G as before. M a reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

- The GIT quotient

$$
\alpha_{M}: M \longrightarrow \mathbf{A}_{M}:=M / /(G \times G)
$$

is called the abelianization of M.

- \mathbf{A}_{M} is a toric variety for the torus $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)$.

Abelianization

■ G as before. M a reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

- The GIT quotient

$$
\alpha_{M}: M \longrightarrow \mathbf{A}_{M}:=M / /(G \times G)
$$

is called the abelianization of M.

- \mathbf{A}_{M} is a toric variety for the torus $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)$.

■ Warning! "Abelianization"

Abelianization

■ G as before. M a reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

- The GIT quotient

$$
\alpha_{M}: M \longrightarrow \mathbf{A}_{M}:=M / /(G \times G)
$$

is called the abelianization of M.
■ \mathbf{A}_{M} is a toric variety for the torus $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)$.
■ Warning! "Abelianization"

- A homomorphism $f: M_{1} \rightarrow M_{2}$ induces a commutative square

- f is excellent if the above square is Cartesian.

Very flat monoids

■ G as before. M a reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

- The GIT quotient

$$
\alpha_{M}: M \longrightarrow \mathbf{A}_{M}:=M / /(G \times G)
$$

is called the abelianization of M.

- \mathbf{A}_{M} is a toric variety for the torus $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)$.

■ M is very flat if α_{M} is dominant, flat and with integral fibres.

Very flat monoids

■ G as before. M a reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

- The GIT quotient

$$
\alpha_{M}: M \longrightarrow \mathbf{A}_{M}:=M / /(G \times G)
$$

is called the abelianization of M.

- \mathbf{A}_{M} is a toric variety for the torus $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)$.

■ M is very flat if α_{M} is dominant, flat and with integral fibres.

The enveloping monoid

The category of very flat reductive monoids M with $\left(M^{\times}\right)^{\prime}=G$ and excellent morphisms has a versal object $\operatorname{Env}(G)$, called the (Vinberg) enveloping monoid of G.

The enveloping monoid

- G as before. $G_{+}:=(T \times G) / Z_{G}$.

■ $\omega_{1}, \ldots, \omega_{r}$ fundamental dominant weights, $\alpha_{1}, \ldots, \alpha_{r}$ simple roots.
■ $\operatorname{Env}(G)$ is defined as the closure of the image of

$$
\begin{aligned}
G_{+} & \longrightarrow \bigoplus_{i=1}^{r}\left(\operatorname{End}\left(V_{i}\right) \times \mathbb{A}^{1}\right) \\
{[t, g] } & \longmapsto\left(t^{w_{0}\left(\omega_{i}\right)} \rho_{i}(g), t^{\alpha_{i}}\right)_{i=1}^{r},
\end{aligned}
$$

for $\rho_{i}: G \rightarrow \mathrm{GL}\left(V_{i}\right)$ the irrep with highest weight ω_{i} and w_{0} the longest element of W.

The enveloping monoid

■ G as before. $G_{+}:=(T \times G) / Z_{G}$.
■ $\omega_{1}, \ldots, \omega_{r}$ fundamental dominant weights, $\alpha_{1}, \ldots, \alpha_{r}$ simple roots.
■ $\operatorname{Env}(G)$ is defined as the closure of the image of

$$
\begin{aligned}
& G_{+} \longrightarrow \bigoplus_{i=1}^{r}\left(\operatorname{End}\left(V_{i}\right) \times \mathbb{A}^{1}\right) \\
& {[t, g] \longmapsto\left(t^{w_{0}\left(\omega_{i}\right)} \rho_{i}(g), t^{\alpha_{i}}\right)_{i=1}^{r}, }
\end{aligned}
$$

for $\rho_{i}: G \rightarrow \mathrm{GL}\left(V_{i}\right)$ the irrep with highest weight ω_{i} and w_{0} the longest element of W.
■ $Z_{M^{\times}}^{0} /\left(Z_{M^{\times}}^{0} \cap G\right)=T / Z_{G}=T^{\mathrm{ad}}$.
■ $\mathbf{A}_{\operatorname{Env}(G)}=\operatorname{Spec}\left(k\left[e^{\alpha_{i}}: i=1, \ldots, r\right]\right) \cong \mathbb{A}^{r} .\left(\mathrm{X}^{*}\left(T^{\text {ad }}\right)=\right.$ root lattice $)$.

- $\alpha_{\operatorname{Env}(G)}([t, g])=\left(t^{\alpha_{1}}, \ldots, t^{\alpha_{r}}\right)$.

The multiplicative Hitchin map of a very flat monoid

Invariant theory for the monoid
G as before. M very flat reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

$$
M / / G=(G / / G) \times \mathbf{A}_{M} .
$$

The multiplicative Hitchin map of a very flat monoid

Invariant theory for the monoid

G as before. M very flat reductive monoid with $\left(M^{\times}\right)^{\prime}=G$.

$$
M / / G=(G / / G) \times \mathbf{A}_{M} .
$$

The multiplicative Hitchin map associated to M

Let X as before. We obtain a Hitchin-type fibration

$$
\mathcal{M}_{X}(M) \xrightarrow{h_{M}} \mathcal{B}_{X}(M) \longrightarrow \mathcal{A}_{X}(M) \longrightarrow \operatorname{Bun}_{Z_{M^{\times}}}(X)
$$

by applying the functor $\operatorname{Map}(X,-)$ to the natural sequence of stacky quotients

$$
\left[M /\left(G \times Z_{M^{\times}}\right)\right] \longrightarrow\left[(M / / G) / Z_{M^{\times}}\right] \longrightarrow\left[\mathbf{A}_{M} / Z_{M^{\times}}\right] \longrightarrow \mathbb{B} Z_{M^{\times}}
$$

Comparing the two pictures

Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}(T)_{+}\right)^{n} \subset\left(\mathrm{X}_{*}\left(T^{\text {ad }}\right)_{+}\right)^{n}$. This defines

$$
\begin{aligned}
\boldsymbol{\lambda}: \mathbb{G}_{m}^{n} & \longrightarrow T^{\mathrm{ad}} \\
\left(z_{1}, \ldots, z_{n}\right) & \longmapsto z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}
\end{aligned}
$$

which extends to a map $\boldsymbol{\lambda}: \mathbb{A}^{n} \rightarrow \mathbf{A}_{\operatorname{Env}(G)}$.

Comparing the two pictures

Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}(T)_{+}\right)^{n} \subset\left(\mathrm{X}_{*}\left(T^{\mathrm{ad}}\right)_{+}\right)^{n}$. This defines

$$
\begin{aligned}
\boldsymbol{\lambda}: \mathbb{G}_{m}^{n} & \longrightarrow T^{\text {ad }} \\
\left(z_{1}, \ldots, z_{n}\right) & \longmapsto z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}
\end{aligned}
$$

which extends to a map $\boldsymbol{\lambda}: \mathbb{A}^{n} \rightarrow \mathbf{A}_{\operatorname{Env}(G)}$.
Consider $M_{\boldsymbol{\lambda}}=\operatorname{Env}(G) \times_{\boldsymbol{\lambda}} \mathbb{A}^{n}$ the corresponding very flat monoid. Note that $\mathbf{A}_{M_{\boldsymbol{\lambda}}}=\mathbb{A}^{n}$, so $\mathbb{B} Z_{M_{\lambda}^{\times}}=\operatorname{Pic}(X)^{n}$, and for any tuple of line bundles $L=\left(L_{1}, \ldots, L_{n}\right)$,

$$
\mathcal{A}_{X}\left(M_{\boldsymbol{\lambda}}\right)_{\boldsymbol{L}}=\bigoplus_{i=1}^{n} H^{0}\left(X, L_{i}\right)
$$

Comparing the two pictures

Let $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{d}$.
Since each D_{i} is effective, there exists a canonical section s_{i} of each $\mathcal{O}_{X}\left(D_{i}\right)$. Let us denote $\mathcal{O}_{X}(\boldsymbol{D})=\bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(D_{i}\right)$ and $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$.

Comparing the two pictures

Let $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{\boldsymbol{d}}$.
Since each D_{i} is effective, there exists a canonical section s_{i} of each $\mathcal{O}_{X}\left(D_{i}\right)$. Let us denote $\mathcal{O}_{X}(\boldsymbol{D})=\bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(D_{i}\right)$ and $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$.

Theorem (Bouthier, J. Chi, G. Wang)

The map $X_{\boldsymbol{d}} \rightarrow \mathcal{A}_{X}\left(M_{\boldsymbol{\lambda}}\right), \boldsymbol{D} \mapsto\left(\mathcal{O}_{X}(\boldsymbol{D}), \boldsymbol{s}\right)$ induces the following diagram, where all squares are Cartesian

$$
\begin{aligned}
& \mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G) \xrightarrow{h_{d, \boldsymbol{\lambda}}} \mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G) \longrightarrow X_{\boldsymbol{d}} \\
& \underset{\mathcal{M}_{X}\left(M_{\boldsymbol{\lambda}}\right)}{\downarrow} \xrightarrow{\downarrow} \stackrel{{ }_{M_{\boldsymbol{\lambda}}}}{\downarrow} \mathcal{B}_{X}\left(M_{\boldsymbol{\lambda}}\right) \longrightarrow \mathcal{A}_{X}\left(M_{\boldsymbol{\lambda}}\right) .
\end{aligned}
$$

Contents

1 The multiplicative Hitchin fibration

e The monoid approach
3 Higgs bundles and involutions
4 The root data of an involution
5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
7 Fixed points and the symplectic structure
©e Multiplicative Higes bundles and monopoles
9 Further directions

(Additive) Higgs bundles and involutions

■ G as before. An involution θ of G is an order 2 automorphism of G.
$\square G^{\theta}:=\{g \in G: \theta(g)=g\}, G_{0}^{\theta}=\left(G^{\theta}\right)^{0}, G_{\theta}:=\left\{g \in G: \theta(g) g^{-1} \in Z_{G}\right\}=N_{G}\left(G^{\theta}\right)$.

(Additive) Higgs bundles and involutions

■ G as before. An involution θ of G is an order 2 automorphism of G.
■ $G^{\theta}:=\{g \in G: \theta(g)=g\}, G_{0}^{\theta}=\left(G^{\theta}\right)^{0}, G_{\theta}:=\left\{g \in G: \theta(g) g^{-1} \in Z_{G}\right\}=N_{G}\left(G^{\theta}\right)$.

- Cartan decomposition: $\mathfrak{g}=\mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).

(Additive) Higgs bundles and involutions

- G as before. An involution θ of G is an order 2 automorphism of G.

■ $G^{\theta}:=\{g \in G: \theta(g)=g\}, G_{0}^{\theta}=\left(G^{\theta}\right)^{0}, G_{\theta}:=\left\{g \in G: \theta(g) g^{-1} \in Z_{G}\right\}=N_{G}\left(G^{\theta}\right)$.

- Cartan decomposition: $\mathfrak{g}=\mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).
- X as before.

Stack of (G, θ)-Higgs bundles

$$
\operatorname{Higgs}_{X}(G, \theta)=\left\{(E, \varphi): E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in H^{0}\left(X, E(\mathfrak{m}) \otimes K_{X}\right)\right\} .
$$

(Additive) Higgs bundles and involutions

- G as before. An involution θ of G is an order 2 automorphism of G.

■ $G^{\theta}:=\{g \in G: \theta(g)=g\}, G_{0}^{\theta}=\left(G^{\theta}\right)^{0}, G_{\theta}:=\left\{g \in G: \theta(g) g^{-1} \in Z_{G}\right\}=N_{G}\left(G^{\theta}\right)$.

- Cartan decomposition: $\mathfrak{g}=\mathfrak{g}^{\theta} \oplus \mathfrak{m}$ (+1 and -1 eigenspaces).
- X as before.

Stack of (G, θ)-Higgs bundles

$$
\operatorname{Higgs}_{X}(G, \theta)=\left\{(E, \varphi): E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in H^{0}\left(X, E(\mathfrak{m}) \otimes K_{X}\right)\right\} .
$$

- Our motivation: Study the multiplicative analogue.

(Additive) Higgs bundles and involutions. Motivation

Stack of (G, θ)-Higgs bundles

$$
\operatorname{Higgs}_{X}(G, \theta)=\left\{(E, \varphi): E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in H^{0}\left(X, E(\mathfrak{m}) \otimes K_{X}\right)\right\} .
$$

■ (For $k=\mathbb{C}$). Under the nonabelian Hodge correspondence, (polystable) (G, θ)-Higgs bundles yield representations of $\pi_{1}\left(X^{\text {an }}\right)$ on the real form $G_{\mathbb{R}}$ of G determined by θ.
■ $\operatorname{Higgs}_{X}(G, \theta)$ appears as fixed points of

$$
\begin{aligned}
\operatorname{Higgs}_{X}(G) & \longrightarrow \operatorname{Higgs}_{X}(G) \\
(E, \varphi) & \longmapsto(\theta(E),-\theta(\varphi)) .
\end{aligned}
$$

■ $\operatorname{Higgs}_{X}(G, \theta)$ is the support of a BAA-brane of $\operatorname{Higgs}_{X}(G)$, conjecturally mirror to the BBB-brane inside $\operatorname{Higgs}_{X}\left({ }^{L} G\right)$ given by the Nadler dual group of (G, θ).

Contents

1 The multiplicative Hitchin fibration

e The monoid approach
3 Higgs bundles and involutions
4 The root data of an involution
5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
? Fived points and the symplectic structure
8 Multiplicative Higgs bundles and monopoles
er Further directions

Root data of (G, θ)

■ (G, θ) as before. A torus $A \subset G$ is θ-split if $\theta(a)=a^{-1}$ for all $a \in A$.
■ $A \subset G$ maximal θ-split. If $A \subset T$ maximal torus, T is θ-stable $(\theta(T) \subset T$).

Root data of (G, θ)

- (G, θ) as before. A torus $A \subset G$ is θ-split if $\theta(a)=a^{-1}$ for all $a \in A$.

■ $A \subset G$ maximal θ-split. If $A \subset T$ maximal torus, T is θ-stable $(\theta(T) \subset T)$.

- θ acts on the roots Φ_{T}.
- If $\Phi_{T}^{\theta}=\varnothing$ we say that θ is quasi-split.

Restricted root system

$$
\Phi_{\theta}:=\left\{\bar{\alpha}=\frac{\alpha-\theta(\alpha)}{2} \in \mathrm{X}^{*}(A) \otimes \mathbb{R}: \alpha \in \Phi_{T} \backslash \Phi_{T}^{\theta}\right\}
$$

This is a (possibly non-reduced) root system in $\mathrm{X}^{*}(A) \otimes \mathbb{R}$ with Weyl group $W_{\theta}=N_{G}(A) / Z_{G}(A)$ the little Weyl group.

Root data of (G, θ)

- (G, θ) as before. A torus $A \subset G$ is θ-split if $\theta(a)=a^{-1}$ for all $a \in A$.

■ $A \subset G$ maximal θ-split. If $A \subset T$ maximal torus, T is θ-stable $(\theta(T) \subset T)$.

- θ acts on the roots Φ_{T}.

■ If $\Phi_{T}^{\theta}=\varnothing$ we say that θ is quasi-split.

Restricted root system

$$
\Phi_{\theta}:=\left\{\bar{\alpha}=\frac{\alpha-\theta(\alpha)}{2} \in \mathrm{X}^{*}(A) \otimes \mathbb{R}: \alpha \in \Phi_{T} \backslash \Phi_{T}^{\theta}\right\}
$$

This is a (possibly non-reduced) root system in $\mathrm{X}^{*}(A) \otimes \mathbb{R}$ with Weyl group $W_{\theta}=N_{G}(A) / Z_{G}(A)$ the little Weyl group.

■ Root lattice: $\mathrm{R}\left(\Phi_{\theta}\right)=\mathrm{X}^{*}\left(A /\left(A \cap G_{\theta}\right)\right)$.
■ Weight lattice: $\mathrm{P}\left(\Phi_{\theta}\right)=\mathrm{X}^{*}\left(A /\left(A \cap G^{\theta}\right)\right)=\mathbb{Z}\left\langle\varpi_{1}, \ldots, \varpi_{l}\right\rangle$.

Contents

1 The multiplicative Hitchin fibration

EThe monoid approach
3 Higgs bundles and involutions

- The root data of an involution

5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
7 Fixed points and the symplectic structure
es Multiplicative Higgs bundles and monopoles
9 Further directions

Multiplicative (G, θ)-Higgs bundles

Stack of multiplicative (G, θ)-Higgs bundles

$$
\mathcal{M}_{\boldsymbol{d}}(G, \theta)=\left\{(\boldsymbol{D}, E, \varphi): \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in \Gamma\left(X \backslash|D|, E\left(G / G^{\theta}\right)\right)\right\} .
$$

Multiplicative (G, θ)-Higgs bundles

Stack of multiplicative (G, θ)-Higgs bundles

$$
\mathcal{M}_{\boldsymbol{d}}(G, \theta)=\left\{(\boldsymbol{D}, E, \varphi): \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in \Gamma\left(X \backslash|D|, E\left(G / G^{\theta}\right)\right)\right\} .
$$

■ For $x \in|D|$, we get a local invariant $\operatorname{inv}_{x}(\varphi) \in\left(G / G^{\theta}\right)(K) / G(\mathcal{O})$.

"Cartan decomposition" (Uzawa, Luna-Vust, Nadler)

$$
\left(G / G^{\theta}\right)(K) / G(\mathcal{O})=\mathrm{X}_{*}\left(A /\left(A \cap G^{\theta}\right)\right)_{-},
$$

for $A \subset T$ a maximal θ-split torus.

Multiplicative (G, θ)-Higgs bundles

Stack of multiplicative (G, θ)-Higgs bundles
$\mathcal{M}_{\boldsymbol{d}}(G, \theta)=\left\{(\boldsymbol{D}, E, \varphi): \boldsymbol{D} \in X_{\boldsymbol{d}}, E \in \operatorname{Bun}_{G^{\theta}}(X), \varphi \in \Gamma\left(X \backslash|D|, E\left(G / G^{\theta}\right)\right)\right\}$.
■ For $x \in|D|$, we get a local invariant $\operatorname{inv}_{x}(\varphi) \in\left(G / G^{\theta}\right)(K) / G(\mathcal{O})$.

"Cartan decomposition" (Uzawa, Luna-Vust, Nadler)

$$
\left(G / G^{\theta}\right)(K) / G(\mathcal{O})=\mathrm{X}_{*}\left(A /\left(A \cap G^{\theta}\right)\right)_{-},
$$

for $A \subset T$ a maximal θ-split torus.
■ $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}\left(A /\left(A \cap G^{\theta}\right)\right)_{-}\right)^{n}$.
Stack of multiplicative (G, θ)-Higgs bundles of type $\boldsymbol{\lambda}$
$\mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta)=\left\{(\boldsymbol{D}, E, \varphi) \in \mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta): \operatorname{inv}(\varphi) \leq \boldsymbol{\lambda} \cdot \boldsymbol{D}\right\}$.

The multiplicative Hitchin map

"Chevalley restriction" (Richardson)

$$
k\left[G / G^{\theta}\right]^{G^{\theta}} \cong k\left[A /\left(A \cap G^{\theta}\right)\right]^{W_{\theta}}
$$

Moreover, there are G^{θ}-invariant functions b_{1}, \ldots, b_{l} with highest weights $\varpi_{1}, \ldots, \varpi_{l}$ such that

$$
k\left[G / G^{\theta}\right]^{G^{\theta}}=k\left[b_{1}, \ldots, b_{l}\right] .
$$

The multiplicative Hitchin map

"Chevalley restriction" (Richardson)

$$
k\left[G / G^{\theta}\right]^{G^{\theta}} \cong k\left[A /\left(A \cap G^{\theta}\right)\right]^{W_{\theta}}
$$

Moreover, there are G^{θ}-invariant functions b_{1}, \ldots, b_{l} with highest weights $\varpi_{1}, \ldots, \varpi_{l}$ such that

$$
k\left[G / G^{\theta}\right]^{G^{\theta}}=k\left[b_{1}, \ldots, b_{l}\right] .
$$

Multiplicative Hitchin map

Let $\mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta) \rightarrow X_{\boldsymbol{d}}$ with $\mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G)_{\boldsymbol{D}}:=\bigoplus_{i=1}^{l} H^{0}\left(X, \mathcal{O}_{X}\left(\left\langle\varpi_{i}, \boldsymbol{\lambda} \cdot \boldsymbol{D}\right\rangle\right)\right)$.

$$
\begin{aligned}
h_{\boldsymbol{d}, \boldsymbol{\lambda}}: \mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta) & \longrightarrow \mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta) \\
(\boldsymbol{D}, E, \varphi) & \longmapsto\left(b_{1}(\varphi), \ldots, b_{l}(\varphi)\right) .
\end{aligned}
$$

Contents

1 The multiplicative Hitchin fibration

EThe monoid approach
3 Higgs bundles and involutions

- The root data of an involution

5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
ㅍ Fixed points and the symplectic structure
8 Multiplicative Higgs bundles and monopoles
e Further directions

Symmetric varieties

■ Let G_{1} be any reductive group.
■ A symmetric G_{1}-variety is an algebraic homogeneous space of the form G_{1} / H_{1} with

$$
\left(G_{1}^{\vartheta}\right)^{0} \subset H_{1} \subset\left(G_{1}\right)_{\vartheta},
$$

for some involution $\vartheta \in \operatorname{Aut}_{2}\left(G_{1}\right)$.

Symmetric varieties

■ Let G_{1} be any reductive group.
■ A symmetric G_{1}-variety is an algebraic homogeneous space of the form G_{1} / H_{1} with

$$
\left(G_{1}^{\vartheta}\right)^{0} \subset H_{1} \subset\left(G_{1}\right)_{\vartheta},
$$

for some involution $\vartheta \in \operatorname{Aut}_{2}\left(G_{1}\right)$.
■ Any symmetric G_{1}-variety is of the form $\left(G_{1}^{\prime} \times Z\right) / H$, for some torus Z and $\left(G_{1}^{\prime} \times Z\right)_{0}^{\vartheta} \subset H \subset\left(G_{1}^{\prime} \times Z\right)_{\vartheta}$, where

$$
\begin{aligned}
\vartheta: G_{1}^{\prime} \times Z & \longrightarrow G_{1}^{\prime} \times Z \\
(g, z) & \longmapsto\left(\theta(g), z^{-1}\right),
\end{aligned}
$$

for $\theta \in \operatorname{Aut}_{2}\left(G_{1}^{\prime}\right)$. The symmetric G_{1}^{\prime}-variety $G_{1}^{\prime} /\left(H \cap\left(G_{1}^{\prime} \times\{1\}\right)\right)$ is called the semisimple part of $\left(G_{1}^{\prime} \times Z\right) / H$.

Symmetric embeddings

■ A symmetric G_{1}-embedding is a normal G_{1}-variety Σ with a G_{1}-equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_{1}-variety. Σ is simple if it has only one closed G_{1}-orbit.

Symmetric embeddings

■ A symmetric G_{1}-embedding is a normal G_{1}-variety Σ with a G_{1}-equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_{1}-variety. Σ is simple if it has only one closed G_{1}-orbit.
■ Recall that O_{Σ} is of the form $\left(G_{1}^{\prime} \times Z\right) / H$. We have the following tori

$$
Z_{\Sigma}=Z /\left\{z \in Z: z^{2}=1\right\} \quad \text { and } \quad A_{\Sigma}=Z / \operatorname{pr}_{2}(H)
$$

- The abelianization of Σ is the GIT quotient $\alpha_{\Sigma}: \Sigma \rightarrow \mathbf{A}_{\Sigma}:=\Sigma / / G_{1}^{\prime}$.
- \mathbf{A}_{Σ} is a toric variety for the torus A_{Σ}.

■ Σ affine and simple is very flat if α_{Σ} is dominant, flat and with integral fibres.

Symmetric embeddings

■ A symmetric G_{1}-embedding is a normal G_{1}-variety Σ with a G_{1}-equivariant Zariski open embedding $O_{\Sigma} \hookrightarrow \Sigma$, where O_{Σ} is a symmetric G_{1}-variety. Σ is simple if it has only one closed G_{1}-orbit.
■ Recall that O_{Σ} is of the form $\left(G_{1}^{\prime} \times Z\right) / H$. We have the following tori

$$
Z_{\Sigma}=Z /\left\{z \in Z: z^{2}=1\right\} \quad \text { and } \quad A_{\Sigma}=Z / \operatorname{pr}_{2}(H)
$$

- The abelianization of Σ is the GIT quotient $\alpha_{\Sigma}: \Sigma \rightarrow \mathbf{A}_{\Sigma}:=\Sigma / / G_{1}^{\prime}$.

■ \mathbf{A}_{Σ} is a toric variety for the torus A_{Σ}.
■ Σ affine and simple is very flat if α_{Σ} is dominant, flat and with integral fibres.

- (G, θ) , $T \subset G$ and $A \subset T$ as before.

The enveloping embedding

The category of very flat symmetric embeddings Σ such that the semisimple part of O_{Σ} is G / G^{θ} and excellent morphisms has a versal object $\operatorname{Env}\left(G / G^{\theta}\right)$, called the (Guay) enveloping embedding of G / G^{θ}.

The enveloping embedding

$\square\left(G / G^{\theta}\right)_{+}=(A \times G) /\left\{\left(a n^{-1}, n h\right): h \in G^{\theta}, a \in A \cap G^{\theta}, n \in A \cap G_{\theta}\right\}$.
■ $\operatorname{Env}\left(G / G^{\theta}\right)$ is the closure of the image of

$$
\begin{aligned}
\left(G / G^{\theta}\right)_{+} & \longrightarrow \bigoplus_{i=1}^{l}\left(\mathbb{A}^{m_{i}} \times \mathbb{A}^{1}\right) \\
\quad[a, g] & \longmapsto\left(a^{w_{0}\left(\varpi_{i}\right)}\left(f_{i}(g), \ldots, f_{i}^{m_{i}}(g)\right), a^{-\bar{\alpha}_{i}}\right)_{i=1}^{l}
\end{aligned}
$$

where $f_{i}^{1}, \ldots, f_{i}^{m_{i}}$ is a basis of the G-submodule $k\left[G / G^{\theta}\right]_{\varpi_{i}}$ as a k-vector space.

The enveloping embedding

$\square\left(G / G^{\theta}\right)_{+}=(A \times G) /\left\{\left(a n^{-1}, n h\right): h \in G^{\theta}, a \in A \cap G^{\theta}, n \in A \cap G_{\theta}\right\}$.
■ $\operatorname{Env}\left(G / G^{\theta}\right)$ is the closure of the image of

$$
\begin{aligned}
\left(G / G^{\theta}\right)_{+} & \longrightarrow \bigoplus_{i=1}^{l}\left(\mathbb{A}^{m_{i}} \times \mathbb{A}^{1}\right) \\
\quad[a, g] & \longmapsto\left(a^{w_{0}\left(\varpi_{i}\right)}\left(f_{i}^{\prime}(g), \ldots, f_{i}^{m_{i}}(g)\right), a^{-\bar{\alpha}_{i}}\right)_{i=1}^{l}
\end{aligned}
$$

where $f_{i}^{1}, \ldots, f_{i}^{m_{i}}$ is a basis of the G-submodule $k\left[G / G^{\theta}\right]_{\varpi_{i}}$ as a k-vector space.
■ $Z_{\operatorname{Env}\left(G / G^{\theta}\right)}=A /\left(A \cap G^{\theta}\right), A_{\operatorname{Env}\left(G / G^{\theta}\right)}=A /\left(A \cap G_{\theta}\right)$.

- $\mathbf{A}_{\operatorname{Env}\left(G / G^{\theta}\right)}=\operatorname{Spec}\left(k\left[e^{-\bar{\alpha}_{i}}: i=1, \ldots, l\right]\right)$.

The multiplicative Hitchin map of a very flat symmetric embedding

Invariant theory for the symmetric embedding
(G, θ) as before. Σ very flat symmetric embedding such that the semisimple part of O_{Σ} is G / G^{θ}.

$$
\Sigma / / G^{\theta}=\left(\left(G / G^{\theta}\right) / / G^{\theta}\right) \times \mathbf{A}_{\Sigma}
$$

The multiplicative Hitchin map of a very flat symmetric embedding

Invariant theory for the symmetric embedding
(G, θ) as before. Σ very flat symmetric embedding such that the semisimple part of O_{Σ} is G / G^{θ}.

$$
\Sigma / / G^{\theta}=\left(\left(G / G^{\theta}\right) / / G^{\theta}\right) \times \mathbf{A}_{\Sigma}
$$

The multiplicative Hitchin map associated to Σ

Let X as before. We obtain a Hitchin-type fibration

$$
\mathcal{M}_{X}(\Sigma) \xrightarrow{h_{\Sigma}} \mathcal{B}_{X}(\Sigma) \longrightarrow \mathcal{A}_{X}(\Sigma) \longrightarrow \operatorname{Bun}_{Z_{\Sigma}}(X)
$$

by applying the functor $\operatorname{Map}(X,-)$ to the natural sequence of stacky quotients

$$
\left[\Sigma /\left(G^{\theta} \times Z_{\Sigma}\right)\right] \longrightarrow\left[\left(\Sigma / / G^{\theta}\right) / Z_{\Sigma}\right] \longrightarrow\left[\mathbf{A}_{\Sigma} / Z_{\Sigma}\right] \longrightarrow \mathbb{B} Z_{\Sigma}
$$

Comparing the two pictures

Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}\left(A /\left(A \cap G^{\theta}\right)\right)_{-}\right)^{n} \subset\left(\mathrm{X}_{*}\left(A /\left(A \cap G_{\theta}\right)\right)_{-}\right)^{n}$. This defines

$$
\begin{aligned}
\boldsymbol{\lambda}: \mathbb{G}_{m}^{n} & \longrightarrow A /\left(A \cap G_{\theta}\right) \\
\left(z_{1}, \ldots, z_{n}\right) & \longmapsto z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}},
\end{aligned}
$$

which extends to a map $\boldsymbol{\lambda}: \mathbb{A}^{n} \rightarrow \mathbf{A}_{\operatorname{Env}\left(G / G^{\theta}\right)}$.

Comparing the two pictures

Let $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in\left(\mathrm{X}_{*}\left(A /\left(A \cap G^{\theta}\right)\right)_{-}\right)^{n} \subset\left(\mathrm{X}_{*}\left(A /\left(A \cap G_{\theta}\right)\right)_{-}\right)^{n}$. This defines

$$
\begin{aligned}
\boldsymbol{\lambda}: \mathbb{G}_{m}^{n} & \longrightarrow A /\left(A \cap G_{\theta}\right) \\
\left(z_{1}, \ldots, z_{n}\right) & \longmapsto z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}},
\end{aligned}
$$

which extends to a map $\boldsymbol{\lambda}: \mathbb{A}^{n} \rightarrow \mathbf{A}_{\operatorname{Env}\left(G / G^{\theta}\right)}$.
Consider $\Sigma_{\boldsymbol{\lambda}}=\operatorname{Env}\left(G / G^{\theta}\right) \times_{\boldsymbol{\lambda}} \mathbb{A}^{n}$ the corresponding very flat symmetric embedding. Note that $\mathbf{A}_{\Sigma_{\lambda}}=\mathbb{A}^{n}$, so $\mathbb{B} Z_{\Sigma_{\lambda}}=\operatorname{Pic}(X)^{n}$, and for any tuple of line bundles $L=\left(L_{1}, \ldots, L_{n}\right)$,

$$
\mathcal{A}_{X}\left(\Sigma_{\boldsymbol{\lambda}}\right)_{\boldsymbol{L}}=\bigoplus_{i=1}^{n} H^{0}\left(X, L_{i}\right)
$$

Comparing the two pictures

Let $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{d}$.
Since each D_{i} is effective, there exists a canonical section s_{i} of each $\mathcal{O}_{X}\left(D_{i}\right)$. Let us denote $\mathcal{O}_{X}(\boldsymbol{D})=\bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(D_{i}\right)$ and $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$.

Comparing the two pictures

Let $\boldsymbol{d}=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N}^{n}$ and $\boldsymbol{D}=\left(D_{1}, \ldots, D_{n}\right) \in X_{\boldsymbol{d}}$.
Since each D_{i} is effective, there exists a canonical section s_{i} of each $\mathcal{O}_{X}\left(D_{i}\right)$. Let us denote $\mathcal{O}_{X}(\boldsymbol{D})=\bigoplus_{i=1}^{n} \mathcal{O}_{X}\left(D_{i}\right)$ and $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$.

Theorem (G-García-Prada)

The map $X_{\boldsymbol{d}} \rightarrow \mathcal{A}_{X}\left(\Sigma_{\boldsymbol{\lambda}}\right), \boldsymbol{D} \mapsto\left(\mathcal{O}_{X}(\boldsymbol{D}), \boldsymbol{s}\right)$ induces the following diagram, where all squares are Cartesian

$$
\begin{gathered}
\mathcal{M}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta) \\
\stackrel{h_{d, \boldsymbol{\lambda}}}{\downarrow} \mathcal{B}_{\boldsymbol{d}, \boldsymbol{\lambda}}(G, \theta) \longrightarrow X_{\boldsymbol{d}} \\
\mathcal{M}_{X}\left(\Sigma_{\boldsymbol{\lambda}}\right) \xrightarrow{h_{\Sigma_{\boldsymbol{\lambda}}}} \mathcal{B}_{X}\left(\Sigma_{\boldsymbol{\lambda}}\right) \longrightarrow \mathcal{A}_{X}\left(\Sigma_{\boldsymbol{\lambda}}\right)
\end{gathered}
$$

Contents

1 The multiplicative Hitchin fibration

EThe monoid approach
3 Higgs bundles and involutions

- The root data of an involution

5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
7 Fixed points and the symplectic structure
8 Multiplicative Higgs bundles and monopoles
9 Further directions

Involutions on multiplicative Higgs bundles

■ Consider the natural map $\pi: \operatorname{Aut}_{2}(G) \rightarrow \operatorname{Out}_{2}(G)=\operatorname{Aut}_{2}(G) / \operatorname{Int}(G)$.

The involutions

Given any $a \in \mathrm{Out}_{2}(G)$ and $\varepsilon= \pm 1$, we can consider the involution

$$
\iota_{a}^{\varepsilon}:(E, \varphi) \longmapsto\left(\theta(E), \theta(\varphi)^{\varepsilon}\right),
$$

for any $\theta \in \pi^{-1}(a)$.

- Goal: Study the fixed points $\left((E, \varphi) \cong\left(\theta(E), \theta(\varphi)^{\varepsilon}\right)\right)$.

Involutions on multiplicative Higgs bundles

■ Consider the natural map $\pi: \operatorname{Aut}_{2}(G) \rightarrow \operatorname{Out}_{2}(G)=\operatorname{Aut}_{2}(G) / \operatorname{Int}(G)$.

The involutions

Given any $a \in \mathrm{Out}_{2}(G)$ and $\varepsilon= \pm 1$, we can consider the involution

$$
\iota_{a}^{\varepsilon}:(E, \varphi) \longmapsto\left(\theta(E), \theta(\varphi)^{\varepsilon}\right),
$$

for any $\theta \in \pi^{-1}(a)$.
■ Goal: Study the fixed points $\left((E, \varphi) \cong\left(\theta(E), \theta(\varphi)^{\varepsilon}\right)\right)$.
■ Clearly, for any $\theta \in \pi^{-1}(a)$, multiplicative G^{θ}-Higgs bundles are fixed under ι_{a}^{+}and multiplicative (G, θ)-Higgs bundles are fixed under ι_{a}^{-}.

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ-twisted conjugation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, s) & \longmapsto g * s=g s \theta(g)^{-1} .
\end{aligned}
$$

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ-twisted conjugation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, s) & \longmapsto g * s=g s \theta(g)^{-1} .
\end{aligned}
$$

■ The orbits are homogeneous spaces of the form $G * s \cong G / G^{\theta_{s}}$, for $\theta_{s}=\operatorname{Int}_{s} \circ \theta$.
■ θ_{s} is an involution if and only if $s \in S_{\theta}=\left\{s \in G: s \theta(s) \in Z_{G}\right\}$.
$■ *$ can be extended to an action of $G \times Z_{G}$, which preserves S_{θ}.

A little bit more on involutions

- (G, θ) as before.
- G acts on itself by θ-twisted conjugation

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, s) & \longmapsto g * s=g s \theta(g)^{-1}
\end{aligned}
$$

- The orbits are homogeneous spaces of the form $G * s \cong G / G^{\theta_{s}}$, for $\theta_{s}=\operatorname{Int}_{s} \circ \theta$.
$■ \theta_{s}$ is an involution if and only if $s \in S_{\theta}=\left\{s \in G: s \theta(s) \in Z_{G}\right\}$.
■ * can be extended to an action of $G \times Z_{G}$, which preserves S_{θ}.
■ G / G^{θ} and $G / G^{\theta^{\prime}}$ can be identified if θ and θ^{\prime} are related by

$$
\theta \sim \theta^{\prime} \text { if and only if there exists } \alpha \in \operatorname{Int}(G) \text { such that } \theta^{\prime}=\alpha \circ \theta \circ \alpha^{-1}
$$

■ $\pi: \operatorname{Aut}_{2}(G) \rightarrow \operatorname{Out}_{2}(G)$ descends to the clique map cl : $\operatorname{Aut}_{2}(G) / \sim \rightarrow \operatorname{Out}_{2}(G)$ and

$$
\operatorname{cl}^{-1}(a) \cong S_{\theta} /\left(G \times Z_{G}\right)=H_{\theta}^{1}\left(\mathbb{Z} / 2, G^{\mathrm{ad}}\right),
$$

for any $\theta \in \pi^{-1}(a)$.

The fixed points

Theorem (G-García-Prada)

Let $a \in \operatorname{Out}_{2}(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_{a}^{\varepsilon}$, then:
1 There exists a unique $[\theta] \in \mathrm{cl}^{-1}(a)$ such that there is a reduction of structure group of E to a G^{θ}-bundle $E_{\theta} \subset E$.
2 If we consider the corresponding G-equivariant map $f_{\varphi}:\left.E\right|_{X \backslash|D|} \rightarrow G$, then $\left.f_{\varphi}\right|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon=1$, and in $S^{\theta}:=\left\{s \in G: s=\theta(s)^{-1}\right\}$ if $\varepsilon=-1$.
More precisely, when $\varepsilon=-1,\left.f_{\varphi}\right|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ-twisted conjugation.

The fixed points

Theorem (G-García-Prada)

Let $a \in \operatorname{Out}_{2}(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_{a}^{\varepsilon}$, then:
1 There exists a unique $[\theta] \in \mathrm{cl}^{-1}(a)$ such that there is a reduction of structure group of E to a G^{θ}-bundle $E_{\theta} \subset E$.
2 If we consider the corresponding G-equivariant map $f_{\varphi}:\left.E\right|_{X \backslash|D|} \rightarrow G$, then $\left.f_{\varphi}\right|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon=1$, and in $S^{\theta}:=\left\{s \in G: s=\theta(s)^{-1}\right\}$ if $\varepsilon=-1$.
More precisely, when $\varepsilon=-1,\left.f_{\varphi}\right|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ-twisted conjugation.

Proof idea

Pick $\theta_{0} \in \pi^{-1}(a)$ and $\psi:(E, \varphi) \rightarrow(E, \varphi)$ a θ_{0}-twisted automorphism. Then we get $f_{\psi}: E \rightarrow S_{\theta_{0}}$ G-equivariant, so it maps to a single G-orbit G / G^{θ}. This gives the reduction to G^{θ}.

The fixed points

Theorem (G-García-Prada)

Let $a \in \operatorname{Out}_{2}(G)$. If (E, φ) is simple and $(E, \varphi) \cong \iota_{a}^{\varepsilon}$, then:
1 There exists a unique $[\theta] \in \mathrm{cl}^{-1}(a)$ such that there is a reduction of structure group of E to a G^{θ}-bundle $E_{\theta} \subset E$.
2 If we consider the corresponding G-equivariant map $f_{\varphi}:\left.E\right|_{X \backslash|D|} \rightarrow G$, then $\left.f_{\varphi}\right|_{E_{\theta}}$ takes values into G^{θ} if $\varepsilon=1$, and in $S^{\theta}:=\left\{s \in G: s=\theta(s)^{-1}\right\}$ if $\varepsilon=-1$.
More precisely, when $\varepsilon=-1,\left.f_{\varphi}\right|_{E_{\theta}}$ takes values in a single orbit $G * s \subset S^{\theta}$ for some $s \in S^{\theta}$ unique up to θ-twisted conjugation.

Proof idea

Pick $\theta_{0} \in \pi^{-1}(a)$ and $\psi:(E, \varphi) \rightarrow(E, \varphi)$ a θ_{0}-twisted automorphism. Then we get $f_{\psi}: E \rightarrow S_{\theta_{0}}$ G-equivariant, so it maps to a single G-orbit G / G^{θ}. This gives the reduction to G^{θ}. By assumption we have $f_{\psi}(e) \theta_{0}\left(f_{\varphi}(e)\right) f_{\psi}(e)^{-1}=f_{\varphi}(e)^{\varepsilon}$ so, for $e \in E_{\theta}$, we get $\theta\left(f_{\varphi}(e)\right)=f_{\varphi}(e)^{\varepsilon}$.

The symplectic structure

- (G, θ) as above.
- Assume that X is Calabi-Yau (so $X=\mathbb{A}^{1}, \mathbb{G}_{m}$ or an elliptic curve).
- Hurtubise and Markman define an algebraic symplectic structure Ω in the moduli space of simple multiplicative Higgs bundles with fixed invariant.

The symplectic structure

- (G, θ) as above.
- Assume that X is Calabi-Yau (so $X=\mathbb{A}^{1}, \mathbb{G}_{m}$ or an elliptic curve).

■ Hurtubise and Markman define an algebraic symplectic structure Ω in the moduli space of simple multiplicative Higgs bundles with fixed invariant.

Theorem (G-García-Prada)

For any $a \in \operatorname{Out}_{2}(G)$,

$$
\left(\iota_{a}^{\varepsilon}\right)^{*} \Omega=\varepsilon \Omega .
$$

Therefore, the fixed points of ι_{a}^{+}form an algebraic symplectic submanifold and the fixed points of ι_{a}^{-}form an algebraic Lagrangian submanifold.

Contents

1 The multiplicative Hitchin fibration

EThe monoid approach
3 Higgs bundles and involutions

- The root data of an involution

5 Multiplicative Higgs bundles associated to an involution
6 The symmetric embedding approach
Z Fixed points and the symplectic structure
8 Multiplicative Higgs bundles and monopoles
2 Further directions

The Charbonneau-Hurtubise correspondence

- Assume $k=\mathbb{C}$ and work in the analytic category.
- Multiplicative G-Higgs bundles on X are equivalent to mini-holomorphic G-bundles on $X \times S^{1}$ with Dirac-type singularities.
■ Let $\mathbb{E} \rightarrow X \times S^{1}$ be such a mini-holomorphic bundle.

The Charbonneau-Hurtubise correspondence

■ Assume $k=\mathbb{C}$ and work in the analytic category.
■ Multiplicative G-Higgs bundles on X are equivalent to mini-holomorphic G-bundles on $X \times S^{1}$ with Dirac-type singularities.
■ Let $\mathbb{E} \rightarrow X \times S^{1}$ be such a mini-holomorphic bundle.
■ Given a reduction of structure group h from \mathbb{E} to a maximal compact subgroup $K \subset G$ (a "Hermitian metric"), there is an associated Chern pair $\left(A_{h}, \phi_{h}\right)$ formed by a K-connection A_{h} and a "Higgs field" ϕ_{h}.
■ If ad-hoc stability conditions are satisfied, one can use Donaldson-Uhlenbeck-Yau on $X \times S^{1} \times S^{1}$ to obtain a reduction h such that the corresponding pair $\left(A_{h}, \phi_{h}\right)$ satisfies the Hermitian-Einstein-Bogomolny equation

$$
F_{A_{h}}-i C \omega_{X}=* d_{A_{h}} \phi_{h} .
$$

Involutions of mini-holomorphic bundles

■ If (E, φ) is obtained by taking scattering of some mini-holomorphic bundle \mathbb{E}, then $\left(E, \varphi^{-1}\right)$ is obtained by scattering in the opposite direction, thus it corresponds to $\epsilon^{*} \mathbb{E}$, for

$$
\begin{aligned}
\epsilon: S^{1} & \longrightarrow S^{1} \\
e^{i t} & \longmapsto e^{i(2 \pi-t)} .
\end{aligned}
$$

■ Thus, in terms of mini-holomorphic bundles, we get the involutions

$$
\begin{aligned}
\iota_{a}^{+}(\mathbb{E}) & =\theta(\mathbb{E}) \\
\iota_{a}^{-}(\mathbb{E}) & =\epsilon^{*} \theta(\mathbb{E})
\end{aligned}
$$

Involutions of mini-holomorphic bundles

■ If (E, φ) is obtained by taking scattering of some mini-holomorphic bundle \mathbb{E}, then $\left(E, \varphi^{-1}\right)$ is obtained by scattering in the opposite direction, thus it corresponds to $\epsilon^{*} \mathbb{E}$, for

$$
\begin{aligned}
\epsilon: S^{1} & \longrightarrow S^{1} \\
e^{i t} & \longmapsto e^{i(2 \pi-t)} .
\end{aligned}
$$

■ Thus, in terms of mini-holomorphic bundles, we get the involutions

$$
\begin{aligned}
\iota_{a}^{+}(\mathbb{E}) & =\theta(\mathbb{E}) \\
\iota_{a}^{-}(\mathbb{E}) & =\epsilon^{*} \theta(\mathbb{E})
\end{aligned}
$$

- The description for monopoles should follow from here (future work with García-Prada).

Contents

1 The multiplicative Hitchin fibration

EThe monoid approach
3 Higgs bundles and involutions

- The root data of an involution

5 Multiplicative Higgs bundles associated to an involution
(6) The symmetric embedding approach

7 Fixed points and the symplectic structure
es Multiplicative Higgs bundles and monopoles
9 Further directions

Further directions

■ Monopoles and involutions (forthcoming work with García-Prada).

Further directions

■ Monopoles and involutions (forthcoming work with García-Prada).
■ Langlands duality and mirror symmetry (work in progress with Morrissey).

Further directions

■ Monopoles and involutions (forthcoming work with García-Prada).
■ Langlands duality and mirror symmetry (work in progress with Morrissey).
■ Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.

Further directions

■ Monopoles and involutions (forthcoming work with García-Prada).
■ Langlands duality and mirror symmetry (work in progress with Morrissey).
■ Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.
■ Generalization to spherical varieties? And beyond?

Further directions

■ Monopoles and involutions (forthcoming work with García-Prada).
■ Langlands duality and mirror symmetry (work in progress with Morrissey).
■ Study the Hitchin fibration by constructing regular quotients of symmetric embeddings.
■ Generalization to spherical varieties? And beyond?

- Applications to relative Langlands?

Thank you

