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ABSTRACT

This dissertation is centered around the study of the action of a holomorphic
involution 0 of a complex reductive group G on the space of multiplicative G-
Higgs bundles over a compact Riemann surface X, as introduced by Hurtubise
and Markman [ ]. Provided the correspondence of Charbonneau-Hurtubise
[ ] and Smith [ ] between multiplicative Higgs bundles and singular
monopoles on S! x X, where S! is the circle, equivalently we study the action of 0
on the moduli space of singular monopoles on S! x X. More precisely, we study
the fixed points of the involutions

1 (E, @) — (B(E), 0(@)*).

Here, (E, @) is a multiplicative G-Higgs bundle, 6(E) is the G-bundle associated
to the action of ® on G, and 6() is the natural section of 6(E) induced from .

In the process of describing the fixed points, we introduce a notion of multi-
plicative Higgs bundles with values on the symmetric variety G/G°, for G® c G
the subgroup of fixed points of 6, which we call multiplicative (G, 0)-Higgs bundles.
These objects appear as fixed points of the involution (?, but other related objects
also appear. The theory of multiplicative (G, 8)-Higgs bundles can be understood
as a "multiplicative analog" of the theory of Higgs bundles for real groups. Higgs
bundles for real groups already play an important role in the original paper of
Hitchin introducing Higgs bundles [ ] and in his later paper [ ], and
their study has been very active in the last two decades; we refer the reader to
[ ] for a survey on this topic, and for further references therein. Taking into
account that symmetric varieties are in fact a generalization of groups, the theory
developed here provides a generalization of the theory of multiplicative Higgs

bundles. Moreover, by replacing Vinberg’s theory of reductive monoids [ ] by
Guay’s theory of embeddings of symmetric varieties [ ], we generalize some
of the results of Bouthier, J. Chi and G. Wang [ , , , , ]

to the context of multiplicative (G, 0)-Higgs bundles.

When X has genus 1, we also study the interplay of the involutions 10 with the
holomorphic symplectic structure of the moduli space of multiplicative G-Higgs
bundles and, equivalently, with the hyper-Kéhler structure of the moduli space
of singular monopoles on S! x X. In particular, we show that the fixed points of
1% define a holomorphic symplectic submanifold of the moduli space, while the
fixed points of 1 form a holomorphic Lagrangian submanifold.

Keywords: Multiplicative Higgs bundle, multiplicative Hitchin fibration, involutions,
symmetric varieties, mini-holomorphic bundle, monopoles, Bogomolny equations
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RESUMEN (EN ESPANOL)

Esta memoria se centra en el estudio de la accién de una involucién holomorfa 6
de un grupo reductivo complejo G en el espacio de los G-fibrados de Higgs mul-
tiplicativos sobre una superficie de Riemann compacta X, introducidos por Hur-
tubise y Markman [ ]. Dada la correspondencia de Charbonneau-Hurtubise
[ ] y Smith [ ] entre fibrados de Higgs multiplicativos y monopolos
singulares en S! x X, donde S! es la circunferencia, equivalentemente estudia-
mos la accién de 0 en el espacio de méduli de monopolos singulares en S x X.
Concretamente, estudiamos los puntos fijos de las involuciones

1§ 2 (E, @) = (8(E), 8()*").

Aqui, (E, @) esun G-fibrado de Higgs multiplicativo, 6(E) es el G-fibrado associado
alaaccién de 6 en G, y 6(¢) es la secciéon natural de 6(E) inducida por ¢.

En el proceso de describir los puntos fijos, introducimos una nocién de fibrados
de Higgs multiplicativos con valores en la variedad simétrica G/G®, para G® ¢
G el subgrupo de los puntos fijos de 6, que llamamos (G, 6)-fibrados de Higgs
multiplicativos. Estos objetos aparecen como puntos fijos de la involucién (2, pero
también aparecen otros objetos relacionados. La teoria de (G, 0)-fibrados de Higgs
multiplicativos se puede entender como un «andlogo multiplicativo» de la teoria
de fibrados de Higgs para grupos reales. Los fibrados de Higgs para grupos

reales ya juegan un papel importante en el articulo original de Hitchin [ ly
en su articulo posterior [ ], y su estudio ha estado muy activo en los tltimos
veinte afios; referimos a [ ] para una resefia del tema y para méds referencias.

Entendiendo las variedades simétricas como una generalizacién de los grupos,
la teoria desarrollada aqui da una generalizacién de la teoria de fibrados de
Higgs multiplicativos. Reemplazando la teorfa de monoides reductivos de Vinberg

[ ] por la teoria de inmersiones de variedades simétricas de Guay [ 1,

generalizamos algunos de los resultados de Bouthier, J. Chi y G. Wang [ ,
, , , ] a este contexto.

Cuando X tiene género 1, también estudiamos la interaccién entre las involucio-

nes 9 con la estructura holomorfa simpléctica del espacio de méduli de G-fibrados

de Higgs multiplicativos y, equivalentemente, con la estructura hiper-kdhleriana
del espacio de méduli de monopolos singulares en S! x X. En particular, mostra-
mos que los puntos fijos de 1§ definen una subvariedad holomorfa simpléctica del
espacio de méduli, mientras que los puntos fijos de (® forman una subvariedad
holomorfa lagrangiana.

Palabras clave: Fibrado de Higgs multiplicativo, fibracion de Hitchin multiplicativa,
involuciones, variedades simétricas, fibrado mini-holomorfo, ecuaciones de Bogomolny

2020 MSC: Primary 14D23; Secondary 14H60, 14M17, 53C07






Vino, primero, pura,
vestida de inocencia.
Y la amé como un nifo.

Luego se fue vistiendo
de no sé qué ropajes.
Y la fui odiando, sin saberlo.

Lleg6 a ser una reina,
fastuosa de tesoros...
iQué iracundia de yel y sin sentido!

... Mas se fue desnudando.
Y yo le sonreia.

Se quedo con la tanica
de su inocencia antigua.
Crei de nuevo en ella.

Y se quito la tanica,

y apareci6é desnuda toda. . .
iOh pasién de mi vida, poesia
desnuda, mia para siempre!

Juan Ramon Jiménez, Eternidades






INTRODUCTION

A PANORAMIC VIEW

A multiplicative G-Higgs bundle on X is a pair (E, ¢), where E is a holomorphic
principal G-bundle over X and ¢ is a meromorphic section of the adjoint group
bundle E(G) := E Xg G. This is indeed a "multiplicative" version of a (twisted) G-
Higgs bundle on X, which is a pair (E, ¢) with E a holomorphic principal G-bundle
over X and ¢ a section of the adjoint Lie algebra bundle E(g), twisted by some
line bundle L over X. In the multiplicative case, instead of fixing the twisting
line bundle L, one controls the singularity at each singular point x by fixing a
dominant cocharacter of G.

Charbonneau and Hurtubise [ ] and later Smith [ ] have defined
stability conditions for multiplicative G-Higgs bundles and proven a Hitchin—
Kobayashi type correspondence between stable multiplicative G-Higgs bundles
and singular K-monopoles over the 3-manifold S! x X, where S! denotes the circle
and K C G is a maximal compact subgroup. Here, by a singular K-monopole over
S! x X we mean a triple (E,V, @), with E a principal K-bundle over SIxX,Va
K-connection on E and @ a section of the adjoint bundle E(f), such that

1. (E,V, @) canbe locally approximated by a standard Dirac Tx-monopole over
R3, for Tx ¢ K a maximal torus, and

2. it solves the Hermitian—Bogomolny equation
Fy —+VO = iCwx,

for some central element C € Z(f). Here Fy denotes the curvature of V, and
+ is the Hodge star operator.

Consider now the involution 6 € Auty(G). Using this involution, we can
construct two different multiplicative G-Higgs bundles starting from a given one
(E, @), indeed, we can put

LI(E, @) = (B(E), 8(¢)) and (2(E, ) = (8(E),8(p)7").

Note that applying the same process again, we get back the starting (E, ¢). The
main purpose of this thesis is to describe the fixed points of these involutions. Of
course, by going through the correspondence of Charbonneau-Hurtubise-Smith,
one can consider the counterparts of these involutions in the moduli space of
monopoles. In this document we describe precisely what this involution is in the
moduli space of monopoles and give another equivalent description of the fixed
points from the point of view of monopoles.

13



14 INTRODUCTION

Among the different classes of objects appearing as fixed points of the involu-
tion (9, there is one of particular interest, which is the one formed by what we call
multiplicative (G, 0)-Higgs bundles. These provide a generalization of multiplica-
tive G-Higgs bundles. A multiplicative (G, 8)-Higgs bundle on X is a pair (E, ¢)
with E — X a holomorphic principal G®-bundle and ¢ a meromorphic section of
the associated bundle of symmetric varieties E(G/G?).

When G is semisimple, Frenkel and Ngo [ ] suggest the idea that, if
(E, @) is a multiplicative G-Higgs bundle, then one can regard the section ¢ as a
holomorphic (instead of meromorphic) map, if one extends it to a very flat reductive
monoid such that the derived group of its unit group is equal to G. This idea has
been crucial in the works of Bouthier and ]. Chi dedicated to study analogues of

affine Springer fibres [ , , ], and has ultimately led to the
proof of the Fundamental Lemma of Langlands—Shelstad by G. Wang [ ] in
the spirit of Ngo’s work on the Fundamental Lemma for the Lie algebras [ 1.

Here, we generalize the "monoid point of view" and some of the results of
Bouthier, Chi and Wang to the context of multiplicative (G, 6)-Higgs bundles. In
order to do this, we use Guay’s theory of very flat embeddings of symmetric varieties
[ ] and show that the section ¢ of a multiplicative (G, 6)-Higgs bundle can
be extended to a very flat embedding I of the symmetric variety G/G°. Motivated
by the results of Wang, we expect that our theory of multiplicative (G, 0)-Higgs
bundles provides the correct framework for a proof of a generalization of the
Fundamental Lemma for the groups to symmetric varieties, in the spirit of the
Relative Langlands Program of Ben-Zvi-Sakellaridis—Venkatesh [ . We
leave that direction completely unexplored here.

An analog of the Hitchin fibration [ ] exists in the context of multi-
plicative Higgs bundles, and was originally considered by Hurtubise-Markman
[ ]. The multiplicative Hitchin fibration has also been studied from the

"monoid point of view" in the works of Frenkel-Ng6, Bouthier, Chi and Wang
and can also be generalized to multiplicative (G, 0)-Higgs bundles. The study of
the fibres and symmetries of Hitchin map for (G, 6)-Higgs bundles is not consid-
ered here, although we include some comments in the Further Directions section
at the end of this dissertation.

Multiplicative (G, 0)-Higgs bundles are the multiplicative analog of Higgs
bundles "for real groups", which under the nonabelian Hodge correspondence are
matched to representations of the fundamental group of X in the real form of G
associated to 0. A "multiplicative version" of the nonabelian Hodge correspon-
dence is still not known, but expected at least in the case in which X has genus 1,
since in that case the moduli space of monopoles is naturally hyper-Kahler. Our
description of fixed monopoles under the involution 1° should explain what are
the objects corresponding to them in this conjectural "de Rham side".

The Hitchin fibration is known to exhibit some form of Langlands duality and
mirror symmetry. More precisely, the work of Donagi and Pantev [ ] shows
how the Hitchin bases associated to a reductive group G and its Langlands dual
G are naturally identified through the choice of an invariant bilinear form, while
the Hitchin fibres are dual abelian varieties. Taking Fourier-Mukai transforms
over these fibres is conjectured to give the construction of (B, B, B)-branes on the
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moduli space of G-Higgs bundles from (B, A, A)-branes on the moduli space of G-
Higgs bundles. Higgs bundles for real forms Gr are known to define the support
ofa (B, A, A)-brane, conjecturally dual to the moduli space of G g,-Higgs bundles,
for Ggy, the Nadler dual group of the real form Gg. In this document we show
how multiplicative (G, 0)-Higgs bundles (and more generally, the fixed points of
19) form the support of a (B, A, A)-brane on the moduli space of multiplicative G-
Higgs bundles (when X has genus 1). We conjecture that results analogous to those
of Donagi-Pantev hold in the multiplicative case, and that the dual (B, B, B)-brane
corresponding to multiplicative (G, 8)-Higgs bundles is formed by multiplicative
G Gy-bundles.

THE CLASSICAL STORY

Higgs bundles and the Hitchin moduli space

The theory of Higgs bundles was initiated by Hitchin [ ] in the context of
the study of the dimensional reduction of the self-dual Yang-Mills equations on
R* by the action of translation in two directions. The resulting equations in R? are
conformally invariant, and thus they can be considered over a compact Riemann
surface X. This way, one obtains what are known as the Hitchin equations:

Fy + [@, 0] = —2mididg wx,

Vole = 0.
These are equations for a pair (V, ¢), where V is a Hermitian connection on a
Hermitian vector bundle E — X of rank r and degree d, and ¢ € Q'(X, End E)
is a (1,0)-form with values on the endomorphism bundle End E. The notation
[¢, ¢']indicates taking the commutator in the matrix part, and the wedge product
in the form part. We use wx to denote the area form on X, that we choose to be
normalized to total area 1. The operator V endows E with the structure of a
holomorphic vector bundle, which we denote by E, while the equation V¢ = 0
implies that we can regard ¢ as a holomorphic twisted endomorphism ¢ : E —
E ® Kx, for Kx the canonical line bundle of X. Such a pair (E, ¢) is called a Higgs
bundle.

One can easily check that Higgs bundles (E, ¢) coming from an irreducible
solution to the Hitchin equations must verify the stability condition which states that
every -invariant subbundle F C E must have alower degree than E. Reciprocally,
it is a theorem of Hitchin [ ] (and of Simpson [ ], in broader generality)
that every stable Higgs bundle arises in this way.

The Hitchin moduli space or moduli space of Higgs bundles can be constructed
either with algebro-geometric tools, using Grothendieck’s quot scheme and GIT,
as in Nitsure [ ] and Simpson [ , ], or as a Kdhler quotient, as in
Hitchin’s paper [ ]. The equivalence of both constructions is a consequence
of the theorem of Hitchin and Simpson.

Moreover, the Hitchin moduli space can in fact be obtained as a hyper-Kéhler
quotient and thus it is a hyper-Kédhler manifold. We recall that a hyper-Kdhler
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manifold is a Riemannian manifold endowed with three complex structures I, |
and K which are Kéhler with respect to the Riemannian metric and that satisfy
the quaternionic relations 1> = J? = K2 = IJK = —1. When the Hitchin moduli
space is constructed in this way, the structure I is clearly the one arising naturally
from it parametrizing Higgs bundles. The other complex structures arise from a
different moduli space, as we explain below.

The nonabelian Hodge correspondence

If (V, @) is a solution to the Hitchin equations, we can consider the operator
D=V+o¢-o

which defines a complex connection on the bundle E. Moreover, since we as-
sumed that the Hitchin equations hold, the connection D is flat. Taking the
holonomy, we obtain an r-dimensional representation of the fundamental group
of X. Reciprocally, it is a theorem of Corlette [ ] (and of Donaldson [ |
in the original setting of Hitchin’s paper [ ]) that flat bundles which come
from reductive representations admit a metric which is harmonic, which implies
that the connection D comes from a solution to the Hitchin equations.

The moduli space classifying representations is known as the character variety
and it is naturally an affine variety over C. As a consequence of the results of
Corlette and Donaldson, the character variety is also homeomorphic to the Hitchin
moduli space (actually, these spaces are diffeomorphic in the smooth locus, and, in
fact, they are real-analitically isomorphic). The (isomorphic) complex structures
J and K can be understood as coming from the natural complex structure of the
character variety.

The theory of Higgs bundles, the Hitchin equations, and all the results of Cor-
lette, Donaldson, Hitchin and Simpson remain valid when one considers principal
G-bundles, for G a complex reductive group, instead of vector bundles (and one
would recover the vector bundle case for G = GL,.(C)).

The Hitchin fibration

Another very important feature of the theory of Higgs bundles is the Hitchin
fibration. If Mluiggs(r) denotes the moduli stack of rank r Higgs bundles, the
Hitchin fibration is defined as follows

T
Nt Mriggs(r) — B = (P HO(X, Kb)

i=1

(E, (P) — (bl((p)/ ceey bT((p))/

for bi(@), ..., br(p) the coefficients of the characteristic polynomial
det(@ — Tid) = T" + by(@)T" 1+ + b.(@).

More generally, one can consider the Hitchin fibration for the moduli stack
MHiggs(G) of G-Higgs bundles, for G any reductive group of rank r, by taking
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the b; to be generators of the ring of invariant polynomials C[g]€, for the adjoint
action of G on g, and the Hitchin base & = @Ll HO(X, K;i), for d; = degb;. This
map was introduced by Hitchin in his seminal paper [ ]. The main result of
his paper is that, for the vector bundle case, the generic fibre of an element b € %
is an abelian variety, more precisely, it is isomorphic to the Picard group of some
ramified cover Yy, — X constructed from b and called the spectral curve associated
to b. Hitchin also extends this to classical groups, where the fibres are isomorphic
to some Prym varieties associated to the spectral curve.

The results of Hitchin can be generalized to the slightly more general case of
twisted Higgs bundles, defined in the same way as Higgs bundles, but with the
canonical bundle replaced by any other linebundle L — X. This was considered by
Beauville, Narasimhan and Ramanan [ ]. However, an important property
of the case L = Kx is that the dimension of the Hitchin base 9 is exactly half of
the dimension of the moduli space, and thus the Hitchin fibration is an example
of an algebraically completely integrable system.

Donagi and Gaitsgory [ ] generalized the results of Hitchin to any re-
ductive group G, by studying the regular centralizers and the gerbe structure of
the Hitchin fibration. Their results are better understood using the "stacky point
of view" of Ngo [ ]. In particular, Ngb used the properties of the Hitchin
fibration to give a proof of the Fundamental Lemma of Langlands—Shelstad for
the Lie algebras.

We shall explain here what is Ngd’s "stacky" point of view of the Hitchin
fibration, since it will be of great use in the following. One starts by considering
the quotient stack [g/G] of g by the adjoint action of G. By construction, for any
C-scheme S, the groupoid [g/G](S) of S-points of this stack is the groupoid of pairs
(E, @) with E a principal G-bundle on S and ¢ a section of the associated bundle
E(g). Ngo studies the local properties of the Hitchin fibration by considering the
invariant theory of the natural morphism [g/G] — g / G from the quotient stack
to the GIT quotient. Indeed, the Hitchin fibration can be recovered from this
as follows. The natural homothety action of C* on g commutes with the adjoint
action of G, so one can consider the quotient stacks [¢/(G X C*)] and [(g / G)/C"].
The stack of L-twisted G-Higgs bundles on X can be identified with the stack
of maps X — [¢/(G x €C*)] lying over the natural map X — [SpecC/C*] = BC*
defined by L, while the Hitchin base 8 = @1{:1 HO(X, L%) is the stack of maps
X — [(g / G)/C"] lying over that same map defined by L.

The stacky point of view allows to obtain the gerbe structure of the Hitchin fi-
bration from the gerbe structure of [§/G] — g/ G. Thisis done as follows. One first
considers the centralizer group scheme 1 — g, with fibres I, = {g € G:Adg(x) = x}.
Ngo [ ] shows that, over the regular locus g"*® C g, the group scheme I de-
scends to a group scheme | over g / G. This ] is called the regular centralizer
and one can prove that [§/G] — g / G has the structure of a gerbe banded by ]
(equivalently, of a BJ-torsor).
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Langlands duality and mirror symmetry

There is a duality for Hitchin fibrations with Langlands dual structure groups
by the results of Donagi and Pantev [ . More precisely, we can consider G
and G two Langlands dual complex reductive groups (that is, G and G have dual
based root data), and their respective Hitchin fibrations hg : AHiges(G) — B(G)
and hg : ./%Higgs(é) — B(G). Let T C G be a maximal torus, that we identify
with t/X.(T), t being the Lie algebra of T and X.(T) the cocharacter lattice. We can
consider T C G the corresponding maximal torus, isomorphic to the dual torus of
G
T=TY=t/X(T),

where X*(T) denotes the character lattice. By making a choice of an invariant
bilinear form in g, we can identify canonically t and t*, and also X*(T) and X.(T)
and thus T and T.

As we explained above, for generic values b € %(G) the Hitchin fibre .44, is
an abelian variety. In fact, the gerbe structure that we explained above implies
that these fibres are torsors under a certain Picard stack P,. The result that
Donagi and Pantev obtain is that the choice of an invariant bilinear form induces
an isomorphism of the Hitchin bases #(G) — %(G), and that, generically, the
Hitchin fibres are dual, with the duality given by a Fourier-Mukai transform on

the Picard stacks P,. After the work of Kapustin and Witten [ ], this can
be interpreted in Physics terms as the "classical limit" of the geometric Langlands
correspondence.

The duality of Hitchin systems is related with the physical theory of mirror
symmetry. This theory gives a correspondence under which some objects called
(B, A, A)-branes are matched to others called (B, B, B)-branes. These (B, A, A)-
branes are elements of a certain Fukaya category, and are supported on sub-
manifolds of the Hitchin moduli space which are Kdhler with respect to the first
complex structure I and Lagrangian with respect to ] and K. On the other hand,
(B, B, B)-branes are objects of a derived category of sheaves, supported on hyper-
Ké&hler submanifolds.

THE MULTIPLICATIVE STORY

Singular monopoles and multiplicative Higgs bundles

The dimensional reduction of the self-dual Yang-Mills equations on R* by trans-
lation in only one direction yields the Bogomolny equation on R>:

Fy =*VO.

This equation is well defined over the product Y = S x X of a circle and a Riemann
surface and, more generally, one can consider the Hermitian—Bogomolny equation:

Fy —*VO = iCwx.

This is an equation for a pair (V,®) formed by a Hermitian connection V on
a Hermitian vector bundle E — S! x X and ® € Q%X,un(E)) is a section of
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the bundle of endomorphisms preserving the Hermitian metric. The element
C is a multiple of the identity in the group of automorphisms of E. The same
equation can be considered for any complex reductive group if one replaces vector
bundles by principal G-bundles and instead of Hermitian metrics, one considers
reductions of the structure group from G to a maximal compact subgroup K C G.
The element C is then replaced by a central element of the Lie algebra f of K.

We are interested in considering solutions to the Hermitian-Bogomolny equa-
tion with Dirac-type singularities. By definition, these solutions have a finite set
of singular points yi,...,yn € Y, and around each of these y; one can find a
small 3-dimensional ball over which the structure group of the bundle E re-
duces to a maximal torus and the pair (V, @) is approximated by the image of
the Dirac magnetic monopole through some cocharacter A; of G (understood
as a homomorphism of compact Lie groups A; : U(1) — K). Solutions to the
Hermitian-Bogomolny equation with Dirac-type singularities are called singular
monopoles.

The Hermitian—-Bogomolny equation can be split in three equations

FV,X - *th) = iC(,UX,
[VY!, Vi —iddt] = 0,
VY, Vi +iddt] = 0.

Here, we have decomposed the connection in a X-partand a S!-partas V = Vx +V;
and in turn we have split the X-partas Vx = V;’O + Vg(’l. The first of these equations
is called the real equation while the other two, which are equivalent, are the complex
equations.

The two operators Vg)él and V; — i@ dt define what is called a mini-holomorphic
structure on [E; this is a term introduced by Mochizuki [ ]. On the one

hand, the operator Vg(’l induces a holomorphic structure on each of the fibres
Et = E[(citjxx, and we denote the resulting holomorphic bundle by E¢. On the
other hand, taking parallel transport of the operator V, — i®dt along an interval
[t1, t2] yields a homomorphism

©ty,t; : By, — Ey,

called the scattering map. The complex equations imply that the scattering map
defines a holomorphic homomorphism E¢, — E,. More precisely, the scattering
map is holomorphic when [t;, t2] X X does not contain any singular point, and
meromorphic (with poles in the singular points) when it does.

In particular, if we take parallel transport along the whole circle S!, we obtain a
pair (E, @), with E = Eg = Ezx = Xaholomorphic G-bundle and ¢ a meromorphic
automorphism ¢ : E — E. This is by definition a multiplicative G-Higgs bundle.
If we restrict ¢ to a formal disc around a singular point x; € X of ¢, we obtain
an element of the formal loop group G(F), for F = C((z)) the field of formal
Laurent series in the formal variable z, which is well defined up to left and right
multiplication by elements of the formal arc space G(0), for O = C[[z]] the ring
of formal power series. The set of G(O) X G(O) orbits of G(F) is well known to
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be parametrized by dominant cocharacters of G (see Proposition 1.7.1). If (E, @)
is a multiplicative G-Higgs bundle arising from a singular monopole, then the
cocharacter A; obtained from the scattering map around some singularity x; is
exactly the same cocharacter showing up in the Dirac type singularity.

Multiplicative Higgs bundles coming from an irreducible singular monopole
must verify a certain stability condition (see Definition 3.2.12 for details). Recipro-
cally, it is a theorem of Charbonneau and Hurtubise [ ], and of Smith [ ]
in the general reductive group case, that every stable multiplicative Higgs bundle
arises from a singular monopole.

The moduli space of monopoles can be constructed as a Kdhler quotient and,
when X has trivial canonical bundle Kx (which happens if and only if it has
genus 1), it is in fact a hyper-Kdhler quotient. The algebraic symplectic form on
the moduli space coming from this hyper-Kédhler structure was also constructed
independently from the point of view of multiplicative Higgs bundles in the paper
of Hurtubise and Markman [ 1.

The multiplicative Hitchin fibration

Let x = (x1,...,Xn) be a tuple of points of the Riemann surface X and let A =
(A1,...,An) a tuple of dominant cocharacters of G. We denote by .#x A(G) the
moduli stack of multiplicative G-Higgs bundles (E, ¢) such that has a singularity
at each x; determined by the cocharacter A;. Consider the space

P (G) = EP HX, 6((wi, A %),
i=1

where wy, ..., w, are the fundamental weights of G and, if A - x = )\ Aix; is a
divisor with values on dominant cocharacters, then {(wj, A - x) is the divisor

(wi,7\ . X> = Z(wi, 7\j>Xj.
j=1

)

Let pi : G — GL(V;) denote the fundamental representation of G of highest
weight w;, and let b; = tr(p;) be its trace. The polynomials by, ..., b, generate the
ring of invariant polynomials C[G]¢ under the adjoint action of G on itself. The
multiplicative Hitchin fibration is now defined as the map

ﬂx,?\(G) B '%X,A(G)
(E, @) — (b1(@), ..., br(@)).

The multiplicative Hitchin fibration was originally studied by Hurtubise and
Markman [ ], who in particular prove that, when X has genus 1, it defines
an algebraically completely integrable system.

The monoid point of view

A very convenient point of view on the study of multiplicative Higgs bundles is
to consider them in the context of the theory of reductive monoids. A reductive
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monoid is an algebraic monoid M over C (that is, a monoid object in the category
of C-schemes) such that its unit group M* is a reductive group. A prototypical
example is the monoid of n X n matrices Mat,, which has as unit group the
general linear group, Mat}; = GLy,. The point of view of monoids allows (when
G is semisimple) to see the multiplicative Hitchin fibration in a stacky framework
very similar to Ngo’s stacky point of view of the Hitchin fibration.

Suppose that G is semisimple simply-connected and let M be a monoid such
that the derived group of M* is equal to G. The GIT quotient Am = M /(G X G)
is a toric Z-variety, for Z = Z?\AX the neutral connected component of the centre of
the unit group M*, called the abelianization of the monoid M. A monoid is very
flat if the quotient map M — A is flat, dominant and with integral fibres. A
morphism of monoids M1 — My is excellent if the commutative square induced
with the abelianizations is Cartesian (in other words, if M; = M, X A, Am,).
The category of very flat monoids with semisimple part G and with excellent
morphisms has an universal object called the Vinberg monoid or the enveloping
monoid of G, and denoted by Env(G). The unit group of Env(G) is the group
G, = (GXT)/Z, for T ¢ G a maximal torus, so that it has centre Z, = T2,
and its abelianization is the T2d-toric variety Agny(g) determined by the weight
semigroup

P+(AEIIV(G)) =7, {(xl/ ceey (xr} ’

for «,..., o the simple roots of T.

Note that the S-points of the quotient stack [Agny(g) /T24] consist of pairs
(L, s) formed by a T2-torsor L over S and a section s of the associated bundle
L(Agnv(g))- A pair (x,A) formed by a tuple of n points of X and a tuple of n
dominant cocharacters naturally defines an X-point of [Agny(g)/ Tad), by taking L
to be the T*d-bundle defined by taking each A; as its transition function on a disc
around x; and s to be the natural nonvanishing section of

L(AEHV(G)) = @ o (Z<O(i, 7\j>Xi) .
i=1

i=1

Indeed, this nonvanishing section exists as a consequence of the characters A;
being dominant. The moduli stack of multiplicative G-Higgs bundles is then
recovered as the stack of maps X — [Env(G)/(G X Tad)] lying over the natural
map X — [Agny(c)/ T24] induced by the pair (x, A).

INVOLUTIONS

Involutions, symmetric varieties and real forms

In this dissertation we are mainly concerned with the interplay of multiplicative
Higgs bundles and monopoles with holomorphic involutions 0 of the structure
group G. By an involution of G we mean an automorphism 0 € Aut(G) of order
2 (that is, 8 = id). Associated to an involution, we can consider the fixed point
subgroup

G°={geG:6(g) = g}.
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Moreover, the involution 0 induces the Cartan decomposition of the Lie algebra g of
G as

g=g°@m’,
for ¢° and m® the +1 and -1 eigenspaces of 0, respectively. The space g° is
indeed the Lie algebra of G?, while m? is the tangent space at the identity of the
symmetric variety G/G°.

More generally, by a symmetric subgroup associated to 6, we mean a closed
subgroup H C G such that G) ¢ H C Gg, where G§ = (G®)? is the neutral
connected component of G® and Gy = {g €G:g0(g)te Zg} is equal to the
normalizer of G®. Here, Zg denotes the centre of G. The homogeneous space
G/H, where H C G is a symmetric subgroup, is called a symmetric variety.

The symmetric variety G/G® can be realized inside the group G as the sub-
variety M® = {ge(g)‘1 tg € G}. More generally, we can consider the 0-twisted
conjugation action g *9 x = gx0(g)~! of G on itself. The 0-twisted orbits are
homogeneous spaces of the form G/ GO, for 0 = Int, 00, and Int, the inner au-
tomorphism given by conjugation by s. The automorphism 05 will only be an
involution if it belongs to the subset

So={seG:s0(s) € Zg}.

This allows to identify the subset Sg with the elements of the class a € Out(G) of
0 in the group Outy(G) = Auty(G)/Int(G).

Moreover, the groups G® and G® (and thus the associated symmetric varieties)
are identified if 0 and 0’ are conjugate by an inner automorphism. This induces a
further relation ~ in the group of involutions Auty(G), and the restriction of the
natural map Auty(G) — Outy(G) to Auty(G)/~ is the clique map cl : Autr(G)/~—
Outy(G) of Garcia-Prada and Ramanan | ]. The fibre of an element a €
Outy(G) by the clique map can be identified with the quotient

cl™(a) = Se/(G X Zg)
of Sg (for any representative 0 of a) by the action of G X Zg defined as
(g,z) *x = zg *o X.

It is a classical result of Cartan [ ], that involutions and real forms of G
can be identified. Indeed, for any involution O there exists a maximal compact
real form K with associated conjugation ox of G commuting with 0, and one can
consider the real form og = ok o 0. Reciprocally, given any conugation o there
exists some involution 0 such that 000, is the conjugation of a maximal compact
real form.

Higgs bundles for real forms

Let 6 € Auty(G) be an involution of G. By a (G, 0)-Higgs bundle we mean a pair
(E, @), where E — X is a principal G®-bundle and ¢ is a section of the bundle
E(m®) ® Kx. Here, E(n?) is the bundle associated to the natural action of G® on
m? induced by the adjoint action of G on g.
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In the literature, (G, 0)-Higgs bundles usually receive the name of Gr-Higgs
bundles, where Gp is the real form of G associated to 6. The reason behind
this nomenclature is that under the nonabelian Hodge correspondence these ob-
jects are known to yield representations of the fundamental group of X factoring
through the real group Gr (see [ | for further references).

In the work of Garcia-Prada and Ramanan [ ], it is proven that (G, 0)-
Higgs bundles form the fixed point locus of the natural involution on the moduli
space of G-Higgs bundles given by

(E, @) = (6(E), -0(9)).

The involution (® that we study in this dissertation is a "multiplicative version"
of this one. An easy consequence of this fact is that (G, 6)-Higgs bundles form a
submanifold of the Hitchin moduli space which is Kéhler with respect to the first
complex structure I and Lagrangian with respect to the other two.

It is suggested that Higgs bundles for real forms Gg of G give (B, A, A)-branes
in the moduli space of G-Higgs bundles corresponding to Gg, C G, the dual
group of the real form GR introduced by Nadler [ ]. This conjecture arises
from a gauge-theoretical description of the construction of the Nadler group,
given by Gaiotto and Witten [ ]. See Section 1.4 for more information about
the dual group.

The invariant theory of the action of G® on m® was studied by Kostant and
Rallis [ ]. Their work gives a generalization of the Chevalley isomorphism
by proving that the GIT quotient m® / G® is isomorphic to a/Wy, where a ¢ m®
is a maximal abelian subalgebra and Wy is the little Weyl group associated to the
involution 6 (see Proposition 1.3.11). This allows to define a version of the Hitchin
fibration for (G, 0)-Higgs bundles, also known as the Hitchin fibration for real
groups or the Hitchin fibration for symmetric pairs. This version of the Hitchin
fibration was introduced in the thesis of Pe6n-Nieto [ ], and later explored
further in her work with Garcia-Prada and Ramanan [ , . A
complete description of the Hitchin fibration for symmetric pairs will appear in
forthcoming work of Morrissey and Hameister [ ] (the interested reader can
consult Hameister’s talk [ D.

0

Involutions on the space of multiplicative Higgs bundles

An involution 8 € Auty(G) induces involutions on the space of multiplicative
Higgs bundles in a very similar way as it does in the space of Higgs bundles.
More precisely, for any multiplicative G-Higgs bundle (E, ¢) one can consider

O (E, @) = (B(E), 0(@)*).

At thelevel of isomorphism classes, the involutions 12 only depend on a € Outy(G)
the class of 0 in Outy(G), and thus it makes sense to denote (. At the level of
mini-holomorphic bundles on Y = S! x X, one can show that these involutions
correspond to

O(E) = ¢.6(8)
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where & — Y denotes the mini-holomorphic bundle corresponding to (E, ¢), and
(4 : Y — Y are the involutions

Ci:STxX— SxX

(€', %) > (e*'*,%).

The fixed points of the involution ¢ include multiplicative (G, 0)-Higgs bundles,
which we recall that are pairs (E, @) with E — X a holomorphic principal G°-
bundle and ¢ a meromorphic section of the associated bundle of symmetric
varieties E(G/G?). This makes sense because multiplicative (G, 0)-Higgs bundles
extend naturally to multiplicative G-Higgs bundles, since the left multiplication
action of G on G/G? corresponds to the 0-twisted conjugation action on M® and
thus G® acts on M® by conjugation.

The local singularities of multiplicative (G, 8)-Higgs bundles can be prescribed
in a similar way as for multiplicative G-Higgs bundles. If we restrict the section
¢ to a formal disc around a singular point x; € X, we obtain an element of
the formal loop space (G/G°)(F) which is well defined up to multiplication by
elements of G(O). The G(0O) orbits of (G/G®)(F) are known to be parametrized by
antidominant cocharacters of the torus Age = A/(A N G?), where A is a maximal
0-split torus (that is, A is maximal among all tori of G such that 8(a) = a™! for all
acA).

However, apart from multiplicative (G, 0)-Higgs bundles, other objects appear
as fixed points of 1¢. This is an essential difference between the "additive" case and
the multiplicative case, which stems from the fact that, although m® is precisely
the set of anti-fixed points of g under the involution induced by 6, the set SO =
{s € G:0(s) = s7!} of anti-fixed points contains the symmetric variety M® =
G/GY, but also other components, isomorphic to the symmetric varieties G/G%,
for s € S® and 05 = s0(—)s~!. The other objects are thus pairs (E, @) with E a
G®-bundle and ¢ a meromorphic section of the bundle E(G/G®) with G acting
on G/GP% by left multiplication. The possible values of s that can appear as fixed
points are restricted by the value of cocharacters at the singularities (see Corollary
2.3.9).

As in the case of (G, 0)-Higgs bundles, a Hitchin map can be constructed
for multiplicative (G, 6)-Higgs bundles. The construction relies on Richardson’s
[ ] study of the invariant theory of the action of G® on M?. Richardson
proves that the GIT quotient M® / G is isomorphic to A/Wp, for A a maximal
0-split torus, and Wy the little Weyl group associated to 6.

The point of view of symmetric embeddings

The "monoid point of view" of multiplicative G-Higgs bundles can be generalized
to the theory of multiplicative (G, 0)-Higgs bundles by considering equivariant
embeddings of symmetric varieties. For short, we call these kind of embeddings
symmetric embeddings.

We start by taking G to be semisimple simply-connected and considering
the symmetric variety G/G®. Suppose that L is an equivariant embedding of a
symmetric variety Oy such that its semisimple part is equal to G/G°. By definition,
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the semisimple part of a symmetric variety Oy = Gi/H; is the homogeneous
space G|/(H; N G}), where G] is the derived group of G;. We can define the
abelianization of the symmetric embedding ~ as the GIT quotient Ay = X / G,
which is a toric As-variety, for Ay = Ox/G. As with monoids, we say that a
symmetric embedding X is very flat if the quotient ¥ — Ay is flat, dominant
and with integral fibres. A morphism of symmetric embeddings ¥; — X is
excellent if 1 = ¥ Xa;, As,. The category of very flat symmetric embeddings

with semisimple part G/G® and with excellent morphisms has an universal object
called the Guay embedding or the enveloping embedding of G/G°, and denoted by
Env(G/G®). The torus Afnv(G/Go) is equal to Ag, := A/(AN Gg), for A C G a
maximal 6-split torus, and the abelianization Agyy(g/ge) is the Age-toric variety
determined by the weight semigroup

P+(AEDV(G/G9)) = —Z.:,. {5(1, ceey 5(1} ’

for &, ..., & the simple restricted roots associated to 6 (see Section 1.3).

Now, the S-points of the quotient stack [Agny(g/ce)/AG,e] consist of pairs
(L, s) formed by a Ag,-torsor L over S and a section s of the associated bundle
L(Agnv(g/c9))- A pair (x,A) formed by a tuple of n points of X and n antidominant
cocharacters of A ge naturally defines an X-point of [Ag.y(g/Ge)/Acel, by taking
L to be the Ag,-bundle defined by taking the A; as transition functions and s the
natural nonvanishing section of

1 n
L(Agnv(G/ce)) = @ o (Z(ﬂ%%‘)xi) ,
=1

i=1

which exists as a consequence of the A; being antidominant. The moduli stack
of multiplicative (G, 0)-Higgs bundles is then recovered as the stack of maps
X — [Env(G/G?)/(G® x Ag,)] lying over the natural map X — [Agnv(c/G0)/AGs]
induced by the pair (x, A).

OUTLINE AND MAIN RESULTS

This dissertation consists of three chapters, plus this introduction and a final
digression about possible further directions that can be pursued based on the
results of this thesis.

Chapter 1 covers the theory of symmetric varieties and their embeddings.
The purpose of the chapter is essentially giving some of the preliminary notions
needed to understand the next chapters, specially Chapter 2. However, the chapter
also contains some original results concerning the invariant theory of symmetric
embeddings and their loop parametrization. We begin by reviewing some general
facts about reductive groups with involutions and explain the related points of
view concerning real forms and nonabelian group cohomology. After that, we
introduce the notions of 0-split tori and 0-split parabolic subgroups and review
the construction of the restricted root system and its associated root and weight
lattices. We continue by reviewing the theory of equivariant embeddings of
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symmetric varieties, originally developed by Vust [ ] as a particular case of
the more general theory of spherical varieties of Luna and Vust [ ]. We review
some basic notions about affine spherical varieties and describe the weight lattice
and the weight semigroup of a symmetric variety. We also recall the definition
and the main properties of the dual group of a symmetric variety. In Table 1.2 we
summarize some information about the involutions of the simple groups.

Chapter 1 goes on by explaining the construction and main properties of the
wonderful compactification of a symmetric variety, being of particular interest the
local structure theorem of De Concini and Procesi. We continue by explain-
ing Guay’s theory of very flat embeddings of symmetric varieties [ ] In
particular, we review the notion of abelianization of an embedding, Guay’s char-
acterization of very flat embeddings, and the construction and main properties
of the Guay enveloping embedding. We finish that section by proving some orig-
inal result, Proposition 1.6.15, concerning the invariant theory of a symmetric
embedding. In the section following that one, we study the loop parametrization
of a symmetric variety and its embeddings, by what we mean that we study their
spaces of formal loops and describe the orbits of the formal arc group in them. In
particular, in Proposition 1.7.7, we generalize Proposition 1.8.6, which is a result
of J. Chi [ ]. We finish the chapter by reviewing the theory of reductive
monoids as a particular case of Guay’s theory of symmetric embeddings.

Chapter 2 is centered around multiplicative Higgs bundles over the compact
Riemann surface X. We start with a preliminary section reviewing the theory of
multiplicative Higgs bundles as introduced originally by Hurtubise and Markman
[ ], on the one hand, and as independently developed by Bouthier, J. Chi and
G. Wang [ , , , , ] using the point of view of reductive
monoids, on the other. In particular, we start by explaining a very general point of
view around the Hitchin map and its analogues and generalizations suggested by
Morrissey and Ngo [VIN] (the interested reader may consult Ngd’s talk [ D,
and then go on to explain two equivalent points of view around the multiplicative
Hitchin fibration. We also review Hurtubise and Markman’s arguments for the
existence of a moduli space of simple multiplicative Higgs bundles, and their
description of the tangent space and, when X has genus 1, of the holomorphic
symplectic form in the moduli space.

We continue Chapter 2 with two sections of original results concerning our gen-
eralization of the theory of multiplicative Higgs bundles from reductive groups to
symmetric varieties. In Section 2.2 we define multiplicative (G, 8)-Higgs bundles
and the Hitchin map associated to them, and show that it is equivalent to a natural
Hitchin map arising from the theory of symmetric embeddings. This is the con-
tent of our Theorem 2.2.5 which is a generalization of the result of Bouthier, Chi
and Wang (our Theorem 2.1.9). We also show in Section 2.2 how multiplicative
(G, 8)-Higgs bundles can be realized inside the moduli space of multiplicative G-
Higgs bundles. The last section of Chapter 2, Section 2.3 gives a full description of
the involutions \{ : (E, @) — (6(E), 8(¢)*') on the moduli space of multiplicative
G-Higgs bundles and their fixed points. The main results of this part are Theorem
2.3.4 and Corollary 2.3.9. We finish by describing the interplay of the involutions
1¥ with the Hurtubise-Markman symplectic form in Theorem 2.3.10.



OUTLINE AND MAIN RESULTS 27

Chapter 3 studies the counterpart of the problem studied in the previous
Chapter 2 from the point of view of mini-holomorphic bundles and monopoles.
We begin with a section introducing the concept of a mini-holomorphic principal
G-bundle over Y = S! x X the product of a circle and a compact Riemann surface.
This concept is a generalization of the notion of mini-holomorphic vector bundle
as introduced by Mochizuki [ ]. We also introduce the associated notions
of the Chern pair, Dirac-type singularities and the scattering map, and explain
the equivalence between mini-holomorphic bundles and multiplicative Higgs
bundles. Mini-holomorphic principal bundles were already considered in the
work of Smith [ ] (what he calls "holomorphic structures”). However, we
use here a different, more intrisic approach (not relying on representations nor on
covariant derivatives on associated vector bundles) that, to our best knowledge,
is not already present in the literature.

The next sections of Chapter 3 are dedicated to study monopoles. First, we in-
troduce the Hermitian-Bogomolny equation and the notion of singular monopole,
and review the results of Charbonneau-Hurtubise [ ] and Smith [ ] re-
lating monopoles with polystable mini-holomorphic bundles. We also explain
the construction of the moduli space of monopoles as a Kdhler quotient, and as a
hyper-Kéhler quotient when X has genus 1. Finally, in Section 2.3.9 we describe the
involutions § and their fixed points from the point of view of mini-holomorphic
bundles, and recover the results of Section 2.3 in Propositions 3.4.3 and 3.4.4. The
section ends by describing the involutions entirely in terms of singular monopoles,
and describing the interplay of the involutions with the hyper-Kahler structure of
the moduli space of monopoles, when X has genus 1.

The dissertation ends with an exploration of different further directions of
research that could ramify from this thesis. We begin with several conjectures
(Conjectures 1, 2 and 3) about possible analogues of the results of Donagi—Pantev
regarding duality of Hitchin systems to the multiplicative Hitchin fibration. The
proof of these conjectures is the content of forthcoming joint work with Bene-
dict Morrissey [GM]. We continue by suggesting some problems and questions
regarding the description of the Hitchin map for multiplicative (G, 8)-Higgs bun-
dles through the study of the regular quotients, in the sense of Morrissey and Ngo
[MN, ] of the symmetric variety G/G® and of the enveloping embedding
Env(G/GY) by the action of G°. In particular, we pose the question of the exis-
tence of a cross-section of the GIT quotient G/G® — (G/G®) J G® generalizing the
Kostant—Rallis section [ ] and the Steinberg cross-section [ ]. InQuestions
2 and 3 we propose the study of a possible generalization of Guay’s theory of very
flat embeddings of symmetric varieties to more general spherical varieties. This
could in turn give a generalization of some of the result of this thesis to spherical
varieties. In Problem 2, we suggest the existence of a different gauge-theoretical
description of multiplicative Higgs bundles which, as opposed to the theory of
singular monopoles, is defined intrinsically for the Riemann surface X and does
not need to make use of the product with cirle S!, at least explicitly. We expect that
this could be done by studying K&hler structures on very flat monoids and their
associated moment maps for the action of a maximal compact subgroup K of G,
and by applying the theory of pairs developed by Mundet i Riera [ ]. We fin-
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ish the section of further directions by proposing the study of a "de Rham side" in
the moduli space of singular monopoles. Another interesting possible direction,
that we do not include in this section since we leave it completely unexplored, is
the possible application of the result of this thesis to the pursue of some "relative"
version (in the sense of Ben-Zvi-Sakellaridis—Venkatesh [ 1) of the Funda-
mental Lemma of Langlands—Shelstad for symmetric varieties, generalizing the
thesis of G. Wang [ I

Out of convenience, in Chapters 1 and 2 we work over the algebraic setting,
instead of over the (equivalent) holomorphic setting. That is, we consider G to
be a reductive algebraic group over C and X to be a smooth projective complex
curve instead of a complex reductive group and a compact Riemann surface,
respectively, and consider algebraic (instead of holomorphic) principal bundles
over X. The equivalence of both settings is a consequence of Serre’s GAGA [ I
It follows from the fact that all the arguments of these chapters are algebraic, that
everything in them (except the comments concerning real forms) remains true if
we replace C by any algebraically closed field of characteristic 0.



INTRODUCCION (EN ESPANOL)

UNA VISION PANORAMICA

Un G-fibrado de Higgs multiplicativo en X es un par (E, @), donde E es un G-fibrado
principal holomorfo sobre X y ¢ es una seccién meromorfa del fibrado adjunto
de grupos E(G) := E Xg G. En efecto, esta es una versién "multiplicativa"de un
G-fibrado de Higgs (torcido) en X, que es un par (E, ¢) con E un G-fibrado principal
holomorfo sobre X y ¢ una seccién del fibrado adjunto de 4lgebras de Lie E(g),
tensorizado por un fibrado de linea L sobre X. En el caso multiplicativo, en vez de
tijarse el fibrado de linea L, se controla la singularidad en cada punto singular x
fijando un cocaracter dominante de G.

Charbonneau y Hurtubise [ 1y, posteriormente, Smith [ ] han defi-
nido condiciones de estabilidad para los G-fibrados de Higgs multiplicativos y han
demostrado una correspondencia de tipo Hitchin—-Kobayashi entre G-fibrados de
Higgs multiplicativos estables y K-monopolos singulares sobre la 3-variedad S! x X,
donde S! denota la circunferencia unidad y K C G is a es un subgrupo compacto
maximal. Un K-monopolo singular sobre S! x X es una tripleta (E, V, @), con E
un K-fibrado principal sobre S! x X, V una K-conexién en [E y ® una seccién del
fibrado adjunto E(f), de tal manera que

1. (E,V, ®) puede ser localmente aproximado por un Tx-monopolo de Dirac
estandar en R3, para Tx C K un toro maximal y tal que

2. resuelve la ecuacion de Hermite—Bogomolny
FV —*VO = ijx,

para un cierto elemento central C € Z(f). Aqui, Fy denota la curvatura de V,
y * es el operador estrella de Hodge.

Consideremos ahora la involucién 6 € Auty(G). Usando esta involucién, po-
demos construir dos G-fibrados de Higgs multiplicativos diferentes empezando
con uno dado (E, ¢), en efecto, ponemos

Q(E, @) = (0(E),0()) y 2E, @) = (6(E),0(¢) 7).

Notese que aplicando el mismo proceso otra vez, recuperamos el par (E, ¢) con
el que empezamos. El propdsito principal de esta tesis es describir los puntos
tijos de estas involuciones. Por supuesto, pasando por la correspondencia de
Charbonneau-Hurtubise-Smith, podemos considerar las involuciones correspon-
dientes en el espacio de méduli de monopolos. En este documento describimos
con precisién cudl es esta involucién en el espacio de méduli de monopolos y

29
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damos una descripcién equivalente de los puntos fijos desde el punto de vista de
los monopolos.

Entre las diferentes clases de objetos que aparecen como puntos fijos de la
involucién 12, hay una de especial interés, que es la formada por lo que denomi-
namos (G, 0)-fibrados de Higgs multiplicativos. Estos son una generalizacién de los
G-fibrados de Higgs multiplicativos. Un (G, 6)-fibrado de Higgs multiplicativo en
X es un par (E, @) con E — X un G°-fibrado principal holomorfo y ¢ una seccién
meromorfa del fibrado asociado de variedades simétricas E(G/G?).

Cuando G es semisimple, Frenkel y Ngo [ ] sugieren la idea de que, si
(E, @) es un G-fibrado de Higgs multiplicativo, entonces se puede entender la
secciéon ¢ como una aplicacion holomorfa (en vez de meromorfa), si se extiende a
un monoide reductivo muy plano tal que el grupo derivado de su grupo de unidades
seaigual a G. Estaideaha sido crucial en los trabajos de Bouthier y J. Chi dedicados
a estudiar analogos de las fibras de Springer afines | , , , 1,
y en ultima instancia ha conducido a la demostracién del Lema Fundamental de
Langlands-Shelstad por G. Wang [ ], en el espiritu del trabajo de Ngo sobre
el Lema Fundamental para las dlgebras de Lie [ I

Aqui, generalizamos este «punto de vista de los monoides» y algunos de los
resultados de Bouthier, Chi y Wang al contexto de los (G, 6)-fibrados de Higgs
multiplicativos. Para hacer esto, usamos la teoria de Guay de las inmersiones muy
planas de variedades simétricas [ ] y mostramos que la seccién ¢ de un
(G, 8)-fibrado de Higgs multiplicativo se puede extender a una inmersién muy
plana X de la variedad simétrica G/G 9 Motivados por los resultados de Wang, es-
peramos que nuestra teoria de (G, 0)-fibrados de Higgs multiplicativos establezca
el marco correcto para una demostraciéon de una generalizacién del Lema Funda-
mental para los grupos a las variedades simétricas, en el espiritu del Programa de
Langlands Relativo de Ben-Zvi-Sakellaridis—Venkatesh [ ]. En esta tesis,
esta direccion la dejamos completamente inexplorada.

En el contexto de los fibrados de Higgs multiplicativos existe un analogo de la
fibracién de Hitchin [ ]. Dicho anéalogo fue originalmente considerado por
Hurtubise-Markman [ ]. La fibracién de Hitchin multiplicativa también ha
sido estudiada desde este «punto de vista de los monoides» en los trabajos de
Frenkel-Ng0, Bouthier, Chi y Wang y también se puede generalizar a los (G, 6)-
fibrados de Higgs multiplicativos. El estudio de las fibras y las simetrias de la
aplicacién de Hitchin para (G, 0)-fibrados de Higgs no se considera aqui, aun-
que incluimos algunos comentarios al respecto en el apartado sobre direcciones
futuras al final de la memoria.

Los (G, 0)-fibrados de Higgs multiplicativos son el analogo multiplicativo de
los fibrados de Higgs «para grupos reales», que bajo la correspondencia de Hodge
no abeliana se asocian a representaciones del grupo fundamental de X en la forma
real de G asociada a 0. Por el momento no se conoce una «versién multiplicativa»
de la correspondencia de Hodge no abeliana, pero si se espera que exista al
menos en el caso en el que X tiene género 1, ya que en tal caso el espacio de
moduli de monopolos es naturalmente hiperkdhleriano. Nuestra descripcién de
los monopolos fijos por la involucién 1° deberia explicar cudles son los objetos
que les corresponden en este «lado de de Rham» conjetural.
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Es bien sabido que la fibracién de Hitchin exhibe una forma de dualidad de Lan-
glands y simetria mirror. Con mas precision, el trabajo de Donagi y Pantev [ ]
muestra que las bases de Hitchin asociadas a un grupo reductivo G y a su dual
de Langlands G se identifican naturalmente mediante la eleccién de una forma
bilinear invariante, mientras que las fibras de Hitchin son variedades abelianas
duales. Se conjetura que se puede hacer una construccién de (B, B, B)-branas en
el espacio de méduli de G-fibrados de Higgs a partir de (B, A, A)-branas en el
espacio de G-fibrados de Higgs mediante la aplicacién de la transformada de
Fourier-Mukai sobre las fibras de Hitchin. Los fibrados de Higgs para formas
reales Gr definen el soporte de una (B, A, A)-brana que se conjetura dual al espa-
cio de méduli de G -fibrados de Higgs, para Gg,, el grupo dual de Nadler de la
forma real Ggr. En este documento mostramos cémo los (G, 0)-fibrados de Higgs
multiplicativos (y més generalmente, los puntos fijos de (%) forman el soporte de
una (B, A, A)-brana en el espacio de méduli de G-fibrados de Higgs multiplica-
tivos (cuando X tiene género 1). Conjeturamos que en el caso multiplicativo se
dan resultados analogos a los de Donagi—Pantev, y que la (B, B, B)-brana dual
correspondiente a los (G, 0)-fibrados de Higgs multiplicativos esta formada por
G gg-fibrados de Higgs multiplicativos.

LA HISTORIA CLASICA

Fibrados de Higgs y el espacio de moéduli de Hitchin

La teoria de los fibrados de Higgs fue iniciada por Hitchin [ ] en el contexto
del estudio de la reduccién dimensional de las ecuaciones de Yang-Mills auto-
duales en R* por la accién de las traslaciones en dos direcciones. Las ecuaciones
resultantes en R? son conformemente invariantes, y por tanto pueden considerarse
sobre una superficie de Riemann compacta X. Asi, se obtienen las que se conocen
como las ecuaciones de Hitchin:

Fv + [, @] = —2mig idp wx,
Vole = 0.

Estas son ecuaciones para un par (V, ¢), donde V es una conexién hermitica en un
fibrado vectorial hermitico E — X de rango ry grado d, y ¢ € Q0(X,EndE) es
una (1,0)-forma con valores en el fibrado de endomorfismos End E. La notacién
[@, '] indica que se toma el conmutador en la parte matricial, y el producto
wedge en la parte de forma. Empleamos wx para denotar la forma de &rea en
X, que escogemos normalizada a 4rea total 1. El operador V equipa a E con la
estructura de un fibrado vectorial holomorfo, que denotamos por E, mientras
que la ecuacién V'@ = 0 implica que podemos ver ¢ como un endomorfismo
holomorfo «torcido» ¢ : E — E ® Kx, donde Kx es el fibrado de linea canénico de
X. Estos pares (E, ¢) se denominan fibrados de Higgs.

Se comprueba facilmente que los fibrados de Higgs (E, ¢) que se obtienen a
partir de una solucién irreducible a las ecuaciones de Hitchin deben verificar la
condicion de estabilidad, que afirma que todo subfibrado ¢@-invariante F C E debe
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tener menor grado que E. Reciprocamente, es un teorema de Hitchin [ 1 (y
de Simpson [ ], en mayor generalidad) que todo fibrado de Higgs estable
surge de esta forma.

El espacio de méduli de Hitchin o espacio de méduli de fibrados de Higgs se puede
construir tanto con herramientas algebro-geométricas, usando los esquemas quot
de Grothendieck y la teoria geométrica de invariantes (GIT), como en Nitsure
[ ] y Simpson [ , ], o como cociente kdhleriano, como en el
articulo de Hitchin [ ]. La equivalencia de ambas construcciones es una
consecuencia del teorema de Hitchin y Simpson.

De hecho, el espacio de méduli de Hitchin se puede obtener como un cociente
hiperkdhleriano y es por tanto una variedad hiperkdhleriana. Recordamos que
una variedad hiperkéhleriana es una variedad riemanniana equipada con tres
estructuras complejas I, | y K, que son kdhlerianas con respecto a la métrica
riemanniana y que satisfacen las relaciones cuaterniénicas 12 = J? = K? = [JK =
—1. Cuando el espacio de méduli de Hitchin se construye de esta manera, la
estructura I es claramente la que surge naturalmente del hecho de que parametriza
fibrados de Higgs. Las otras estructuras complejas surgen de un espacio de méduli
distinto, como explicamos a continuacién.

La correspondencia de Hodge no abeliana

Si (V, @) es una solucién a las ecuaciones de Hitchin, podemos considerar el
operador

D=V+(P_(P+/

que define una conexién compleja en el fibrado E. Mas atin, como asumimos
que las ecuaciones de Hitchin se cumplen, la conexién D es plana. Tomando la
holonomia, obtenemos una representacion r-dimensional del grupo fundamental
de X. Reciprocamente, es un teorema de Corlette [ ] (y de Donaldson [ ]
en el planteamiento original del articulo de Hitchin [ ) que los fibrados
planos que provienen de representaciones reductivas admiten una métrica que
es armonica, lo que implica que la conexién D proviene de una solucién a las
ecuaciones de Hitchin.

El espacio de méduli que clasifica las representaciones se conoce como la varie-
dad de caracteres y es naturalmente una variedad afin sobre C. Como consecuencia
de los resultados de Corlette y Donaldson, la variedad de caracteres es también
homeomorfa al espacio de méduli de Hitchin (més atin, estos espacios son di-
feomorfos en los puntos regulares y, de hecho, son isomorfos como variedades
analiticas reales). Las estructuras complejas (isomorfas) ] y K pueden entenderse
como provenientes de la estructura compleja natural de la variedad de caracteres.

La teorfa de fibrados de Higgs, las ecuaciones de Hitchin y los resultados de
Corlette, Donaldson, Hitchin y Simpson siguen siendo validos cuando se conside-
ran G-fibrados principales, para G un grupo complejo reductivo, en vez de fibrados
vectoriales (y se recupera el caso de fibrados vectoriales cuando G = GL,(C)).
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The Hitchin fibration

Otra caracteristica muy importante de la teoria de fibrados de Higgs es la fibracion
de Hitchin. Si M yiggs(r) denota el stack de méduli de los fibrados de Higgs de
rango 1, la fibracién de Hitchin se define como sigue

T
h: ﬂHiggS(r) — B = @ HO(X’ K;()

i=1

(E, @) — (b1(@), ..., br(@)),

para bi(@),..., br() los coeficientes del polinomio caracteristico
det(@ —Tid) = T" +bi(@) T +--- + b, (o).

Mas generalmente, se puede considerar la fibracién de Hitchin para el stack de moé-
duli A Higes(G) de G-fibrados de Higgs, para G cualquier grupo reductivo de rango
1, tomando como b; los generadores del anillo de polinomios invariantes C[a]€,
para la accién adjunta de G sobre g, y la base de Hitchin % = P;_; H(X, Kii), para
d; = degb;. Esta aplicacién fue introducida por Hitchin en su articulo seminal
[ ]. El resultado principal de este articulo es que, para el caso de fibrados
vectoriales, la fibra genérica de un elemento b € % es una variedad abeliana.
Concretamente, es isomorfa al grupo de Picard de una cierta cubierta ramificada
Yy — X construido a partir de b y llamado la curva espectral asociada a b. Hitchin
también extiende esto a los grupos cldsicos, donde las fibras son isomorfas a unas
ciertas variedades de Prym asociadas a la curva espectral.

Los resultados de Hitchin se pueden generalizar al caso ligeramente més gene-
ral de los fibrados de Higgs torcidos, definidos en la misma forma que los fibrados
de Higgs, pero donde el fibrado canénico se sustituye por cualquier otro fibrado
de linea L — X. Esto fue considerado por Beauville, Narasimhan y Ramanan
[ ]. Sin embargo, una propiedad importante del caso L = Kx es que la di-
mension de la base de Hitchin % es exactamente la mitad de la dimensién del
espacio de méduli y por tanto la fibracién de Hitchin es un ejemplo de un sistema
algebraicamente completamente integrable.

Donagiy Gaitsgory [ ] generalizaron los resultados de Hitchin a cualquier
grupo reductivo G, estudiando los centralizadores requlares y la estructura de gerbe
de la fibracién de Hitchin. Sus resultados se entienden mejor a la luz del «punto de
vista stacky» de Ngo [ ]. En particular, Ng6 usé las propiedades de la fibracién
de Hitchin para dar una demostracién del Lema Fundamental de Langlands-
Shelstad para las algebras de Lie.

Explicamos aqui lo que es este punto de vista «stacky» de Ngo, ya que sera de
gran utilidad en lo que sigue. Se empieza considerando el stack cociente [g/G]
de g por la accién adjunta de G. Por construccién, para cualquier C-esquema
S, el grupoide [g/G](S) de S-puntos de este stack es el grupoide de los pares
(E, @) con E un G-fibrado principal y ¢ una seccién del fibrado asociado E(g).
Ngo estudia las propiedades locales de la fibracién de Hitchin considerando la
teoria de invariantes del morfismo natural [g/G] — g / G del stack cociente
al cociente GIT. En efecto, la fibracién de Hitchin puede recuperarse a partir
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de esto como sigue. La accién natural por homotecia de C* en g conmuta con
la accién adjunta de G, de modo que se pueden considerar los stacks cociente
[a/(GXxC")]y[(a/ G)/C"]. El stack de G-fibrados de Higgs L-torcidos en X puede
identificarse con el stack de aplicaciones X — [g/(G X C*)] que cubren la aplicacién
natural X — [SpecC/C*] = BC" definida por L, mientras que la base de Hitchin
B = @Ll HO(X, L4t) es el stack de las aplicaciones X — [(g / G)/C*] que cubren
la misma aplicacién definida por L.

El punto de vista stacky permite obtener la estructura de gerbe de la fibracién de
Hitchin a partir de la estructura de gerbe de [g/G] — g/ G. Se hace de la siguiente
manera. Primero se considera el esquema en grupos de centralizadores I — g, con
fibras I, = {g € G:Adg(x) =x}. Ngo [ ] muestra que, sobre el lugar de
puntos regulares g"® C g, el esquema en grupos I desciende a un esquema en
grupos ] sobre g / G. Este ] se llama el centralizador regular y se puede probar que
[a/G] — g/ G tiene la estructura de un gerbe atado por | (equivalentemente, de
un BJ-torsor).

Dualidad de Langlands y simetria mirror

Existe una dualidad para fibraciones de Hitchin con grupos de estructura duales-
Langlands, por los resultados de Donagi y Pantev [ ]. Mas precisamente,
podemos considerar G y G dos grupos complejos reductivos duales en el sentido
de Langlands (esto es, G y G tienen datos radicales basados duales), y sus respec-
tivas fibraciones de Hitchin hg : MHiges(G) — B(G) y hs - %Higgs(é) — B(G).
Sea T € G un toro maximal, que identificamos con t/X.(T), donde t denota el
algebra de Lie de T y X.(T) el reticulo de cocaracteres. Podemos considerar T c G
el correspondiente toro maximal, isomorfo al toro dual de G

T=TY =t/X(T),

donde X*(T) denota el reticulo de caracteres. Si escogemos una forma bilineal
invariante en g, podemos identificar canénicamente t y t*, y también X*(T) y X.(T)
y por tanto Ty T.

Como explicamos antes, para valores genéricos de b € %(G) la fibra de Hitchin
Ay es una variedad abeliana. De hecho, la estructura de gerbe que explicamos
antes implica que estas fibras son torsores bajo un cierto stack de Picard P,. El
resultado que obtienen Donagi y Pantev es que la elecciéon de una forma bilineal
invariante induce un isomorfismo entre las bases de Hitchin &(G) — %(G), y
que, genéricamente, las fibras de Hitchin son duales, con la dualidad dada por
una transformada de Fourier-Mukai en los stacks de Picard P,. Siguiendo el
trabajo de Kapustin y Witten [ ], esto puede interpretarse en términos de
Fisica como el «limite cldsico» de la correspondencia de Langlands geométrica.

La dualidad de los sistemas de Hitchin se relaciona con la teoria fisica de
la simetria mirror. Esta teoria da una correspondencia bajo la cual ciertos obje-
tos llamados (B, A, A)-branas se asignan a otros llamados (B, B, B)-branas. Estas
(B, A, A)-branas son elementos de una cierta categorfa de Fukaya, y estan sopor-
tadas en subvariedades del espacio de méduli de Hitchin que son kédhlerianas con
respecto de la primera estructura compleja I y Lagrangianas con respectoa ] y K.
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Por otra parte, las (B, B, B)-branas son objetos de una categoria derivada de haces,
soportados en subvariedades hiperkdhlerianas.

LA HISTORIA MULTIPLICATIVA

Monopolos singulares y fibrados de Higgs multiplicativos

La reduccién dimensional de las ecuaciones de Yang-Mills auto-duales en R* por
traslacion en una sola direccién da lugar a la ecuacion de Bogomolny en R:

Fy =+VO.

Esta ecuacion estd bien definida sobre el producto Y = S!x X de una circunferencia
y una superficie de Riemann y, méas generalmente, se puede considerar la ecuacion
de Hermite—Bogomolny:

Fy —*VO = iCwx.

Esta es una ecuacién para un par (V, @) formada por una conexién hermitica V en
un fibrado vectorial hermitico E — S! x X y @ € Q%X, u(E)) es una seccién del
fibrado de endomorfismos que preservan la métrica hermitica. El elemento C es un
mdltiplo de la identidad en el grupo de automorfismos de [E. La misma ecuacién
se puede considerar para cualquier grupo reductivo complejo si se reemplazan
los fibrados vectoriales for G-fibrados principales y, en vez de métricas hermiticas,
se consideran reducciones del grupo de estructura de G a un subgrupo compacto
maximal K C G. El elemento C se reemplaza entonces por un elemento central del
algebra de Lie f de K.

Estamos interesados en considerar soluciones a la ecuaciéon de Hermite—-
Bogomolny con singularidades de tipo Dirac. Por definicién, estas soluciones tienen
un conjunto finito de puntos singulares yi,...,yn € Y, y en torno a cada uno
de estos yi se puede encontrar una pequenia bola 3-dimensional sobre la cual
el grupo de estructura del fibrado E reduce a un toro maximal y el par (V, ®)
es aproximado por la imagen del monopolo magnético de Dirac a través de un
cierto cocaracter A; de G (entendido como un homomorfismo de grupos de Lie
compactos A; : U(1) — K). Las soluciones a la ecuacién de Hermite-Bogomolny
con singularidades de tipo Dirac se llaman monopolos singulares.

La ecuacién de Hermite-Bogomolny se puede dividir en tres ecuaciones

Fle - *th) = iC(Ux,
[VY!, Vi —iddt] = 0,
[V, Vi +iddt] = 0.

Aqui, hemos separado la conexién en una parte relativa X y una parte relativa
aS! enlaformaV = Vx + V, y, a su vez, hemos separado la parte relativa a X
como Vx = V;’O + Vg)(’l. La primera de estas ecauciones se denomina la ecuacién real,
mientras que las otras dos, que son equivalentes, se llaman las ecuaciones complejas.

Los dos operadores Vg)(’l y Vi — i®dt definen lo que se conoce como una
estructura mini-holomorfa en E; éste es un término introducido por Mochizuki
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[ ]. Por una parte, el operador Vg(’l induce una estructura holomorfa en cada
una de las fibras E¢ = E|(.it}xx, y denotamos el fibrado holomorfo resultante por
E¢. Por otra parte, tomando el transporte paralelo del operador Vi — i®dt a lo
largo de un intervalo [t;, t2] se obtiene un homomorfismo

Pyt - Etl ? Etz

llamado la aplicacién de scattering. Las ecuaciones complejas implican que la apli-
cacién de scattering define un homomorfismo holomorfo Ey; — Eg,. Con mas
precision, la aplicacién de scattering es holomorfa cuando [t;, t2] X X no contiene
ningtn punto singular, y meromorfa cuando si lo contiene.

En particular, si tomamos transporte paralelo a lo largo de toda la circunferen-
cia S!, obtenemos un par (E, @), con E = Eg = Exx — X un G-fibrado holomorfo
y @ un automorfismo meromorfo. Esto es por definiciéon unG-fibrado de Higgs
multiplicativo. Si restringimos ¢ a un disco formal en torno a un punto singu-
lar x; € X de ¢, obtenemos un elemento del grupo de lazos formales G(F), con
F = C((2)) el cuerpo de series de Laurent formales en la variable formal z, que
esta bien definido salvo multiplicacion por la izquierda y por la derecha por ele-
mentos del espacio de arcos formales G(0O), para O = C[[z]] el anillo de las series
de potencias formales. Es bien sabido que las G(O) x G(0O)-6rbitas de G(F) estan
parametrizadas por los cocaracteres dominantes de G (ver Proposition 1.7.1). Si
(E, @) es un G-fibrado de Higgs multiplicativo obtenido a partir de un monopolo
singular, entonces el cocaracter A; obtenido de la aplicacién de scattering en torno
a alguna singularidad x; es exactamente el mismo cocaracter que aparece en la
singularidad de tipo Dirac.

Los fibrados de Higgs multiplicativos que se obtienen a partir de un monopolo
singular irreducible deben verificar una cierta condicion de estabilidad (ver Defini-
tion 3.2.12 para més detalles). Reciprocamente, es un teorema de Charbonneau
y Hurtubise [ ], y de Smith [ ] en el caso general de grupos reducti-
vos, que todo fibrado de Higgs multiplicativo estable se obtiene de un monopolo
singular.

El espacio de méduli de monopolos se puede construir como cociente kih-
leriano y, cuando X tiene fibrado canénico Kx trivial (lo que sucede tan solo si
X tiene género 1), es de hecho un cociente hiperkdhleriano. La forma algebraica
simpléctica en el espacio de méduli que se obtiene a partir de esta estructura hiper-
kdhleriana fue también construida independientemente desde el punto de vista
de los fibrados de Higgs multiplicativos en el articulo de Hurtubise y Markman

[ ]

La fibracién de Hitchin multiplicativa

Sea x = (x1,...,Xn) una tupla de puntos en la superficie de Riemann X y sea
A = (A1,...,An) una tupla de cocaracteres dominantes de G. Denotamos por
My A (G) el stack de moduli de los G-fibrados de Higgs multiplicativos (E, ¢) con
una singularidad en cada x; determinada por el cocaracter A;. Consideremos el
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espacio
B (G) = P HX, 0((wi, A - x)),
i=1

donde wy,..., w; son los pesos fundamentales de G y, si A - x = Z{L:l AiXi €s
un divisor con valores en los cocaracteres dominantes, entonces {(wi, A - x) es el
divisor

n
(wi,7\ . X> = Z(wi, 7\j>Xj.
j=1
Sea p; : G — GL(V;) la representacion fundamental de G de peso maés alto wy, y
sea by = tr(pi) su traza. Los polinomios by, ..., b; generan el anillo de polinomios
invariantes C[G]® bajo la accién adjunta de G en sf mismo. La fibracién de Hitchin
multiplicativa se define ahora como la aplicacién

ﬂX,A(G) — @x,A(G)
(E, @) = (b1(@), ..., br(@)).

La fibracién de Hitchin multiplicativa fue estudiada originalmente por Hurtu-
bise y Markman [ ], que en particular probaron que, cuando X tiene género
1, define un sistema algebraicamente completamente integrable.

El punto de vista de los monoides

Un punto de vista muy apropiado para el estudio de los fibrados de Higgs mul-
tiplicativos es considerarlos en el contexto de la teoria de monoides reductivos. Un
monoide reductivo es un monoide algebraico M sobre C (esto es, un objeto en
monoides en la categoria de C-esquemas) tal que su grupo de unidades M* es
reductivo. El ejemplo prototipico es el monoide Mat,, de las matrices n X n, que
tiene como grupo de unidades el grupo general lineal, Mat;; = GL,. El punto
de vista de los monoides permite ver (cuando G es semisimple) la fibracién de
Hitchin multiplicativa en un marco stacky muy similar al punto de vista stacky de
Ngo para la fibracién de Hitchin.

Supongamos que G es semisimple y simplemenete conexo y sea M un monoide
tal que that el grupo derivado de M~ es igual a G. El cociente GIT Apm = M
(G X G) es una Z-variedad tdrica, con Z = Z?le la componente conexa neutra del
centro del grupo de unidades M*, llamada la abelianizacién del monoide M. Un
monoide es muy plano si la aplicacién cociente M — A es plana, dominante
y con fibras integras. Un morfismo de monoides M1 — M, es excelente si el
cuadrado conmutativo inducido con las abelianizaciones es Cartesiano (en otras
palabras, si M1 = M; X Am, Anm,). La categoria de los monoides muy planos con
parte semisimple G y con morfismos excelentes tiene un objeto universal llamado
el monoide de Vinberg o el monoide envolvente de G, y denotado por Env(G). El
grupo unidad de Env(G) es el grupo G, = (GXT)/Z, para T C G a maximal torus,
de modo que su centro es Z; = T4, y su abelianizacién es la T*d-variedad térica
Agny(c) determinada por el semigrupo de pesos

P+(AEI’1V(G)) = Z+ {(X'l/ sy O(T} s
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para o, ..., &, las raices simples de T.

Notese que los S-puntos del stack cociente [Agny(g)/ T24] consisten en pares
(L, s) formados por un T%-torsor L sobre S y una seccién s del fibrado asociado
L(Agnv(g))- Un par (x,A) formado por una tupla de n puntos de X y una tupla
de n cocaracteres dominantes define naturalmente un X-punto de [Agny(g)/ Tad],
tomando L como el T2d-fibrado definido tomando cada A; como funcién de tran-
sicién en un disco en torno a x; y s la seccién natural, que no se anula, del fibrado

L(Agny(G)) = @ 0 (i<0(i;7\j>7(i) .
=1

i=1

En efecto, esta seccién que no se anula existe como consecuencia de que los caracte-
res Aj son dominantes. El stack de méduli de los G-fibrados de Higgs multiplicati-
vos se recupera entonces como el stack de las aplicaciones X — [Env(G)/(G x Tad)]
que cubren la aplicacién natural X — [Agny(g)/ T24] inducida por el par (x, A).

INVOLUCIONES

Involuciones, variedades simétricas y formas reales

Esta memoria esta principalmente dedicada a la interaccién entre los fibrados
de Higgs multiplicativos y los monopolos con las involuciones holomorfas 0 del
grupo de estructura G. Una involucion de G es un automorfismo 6 € Aut(G) de
orden 2 (esto es, 02 = id). Podemos considerar el subgrupo de puntos fijos asociado
a una involucién

G®={geG:0(g) =g}
Ademas, la involucion 6 induce la descomposicion de Cartan del dlgebra de Lie g de
G en la forma
g=g°@om’,

donde g° y m® son los espacios propios con autovalores +1y —1 de 0, respectiva-
mente. El espacio g° es en efecto el dlgebra de Lie de G°, mientras que m® es el
espacio tangente a la identidad en la variedad simétrica G/G°.

En general, un subgrupo simétrico asociado a © es un subgrupo cerrado H C G
tal que Gg C H c Gg, donde Gg = (G?)? es la componente conexa neutra de G° y

Gg = {g €G:g0(g)te Zg} es igual al normalizador de GO. Aqui, Zg denota el
centro de G. Un espacio homogéneo G/H, donde H C G es un subgrupo simétrico,
se llama una variedad simétrica.

La variedad simétrica G/G® puede verse dentro del grupo G como la subva-
riedad M® = {99(9)_1 1g € G}. Mas generalmente, podemos considerar la accién
de conjugacién 0-torcida g#gx = gx0(g)~' de G en sf mismo. Las 6rbitas 0-torcidas
son espacios homogéneos de la forma G/ G9%, con 0 = Int, 00, y Int, el automor-
fismo interno dado por conjugacién por s. El automorfismo 05 serd una involucién
s6lo si s pertenece al subconjunto

So={seG:s0(s) € Zg}.
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Esto permite identificar el subconjunt Sg con los elementos de la clase a € Out,(G)
de 6 en el grupo Outz(G) = Auty(G)/Int(G).

Ademas, los grupos G® y G® (y por tanto las variedades simétricas corres-
pondientes) se identifican si 0 y 8’ son conjugadas por un automorfismo interno.
Esto induce una relacién de equivalencia ~ en el grupo de involuciones Auty(G),
y la restriccién de la aplicacién natural Auty(G) — Outx(G) a Autp(G)/~ es la
aplicacion clique cl : Auty(G)/~— Outy(G) de Garcia-Prada y Ramanan [ 1.
La fibra de un elemento a € Outy(G) por la aplicacién clique se puede identificar
con el cociente

cI™!(a) = Se/(G x Zg)

de Sg (para cualquier representante 0 de a) por la accién de G X Zg definida como

(g,z) *x = zg *o X.

Es un resultado cldsico de Cartan [ ] que las involuciones y las formas
reales de G se pueden identificar. En efecto, para cada involucién 6 existe una
forma real compacta maximal K cuya conjugacién de G asociada ok conmuta con
0,y se puede considerar la forma real 09 = ok 00. Reciprocamente, dada cualquier
conjugacion o existe una involucién 6, tal que o o 0, es la conjugacién de una
forma real compacta maximal.

Fibrados de Higgs para formas reales

Sea 0 € Auty(G) una involucién de G. Un (G, 0)-fibrado de Higgs es un par (E, @),
donde E — Xesun G°-fibrado principal y ¢ es una seccién del fibrado E(m®)®Kx.
Aqui, E(m®) es el fibrado asociado a la accién natural de G® en m® inducida por
la accién adjunta de G en g.

En la literatura, los (G, 0)-fibrados de Higgs suelen recibir el nombre de Gr-
fibrados de Higgs, donde GRr es la forma real de G asociada a 6. La razén detrés
de esta nomenclatura es que bajo la correspondencia de Hodge no abeliana, estos
objetos dan lugar a representaciones del grupo fundamental de X que factorizan
a través del grupo real Gr (ver [ ] para mas referencias).

En el trabajo de Garcia-Prada y Ramanan [ ], se demuestra que los (G, 0)-
fibrados de Higgs forman el lugar de puntos fijos de la involucién natural en el
espacio de méduli de G-fibrados de Higgs dada por

(E, @) = (6(E), -0(9)).

La involucién (° que estudiamos en esta memoria es una «versién multiplicativa»
de ésta. Una consecuencia sencilla de este hecho es que los (G, 0)-fibrados de Higgs
forman una subvariedad del espacio de méduli de Hitchin, que es kdhleriana con
respecto a la primera estructura compleja I y lagrangiana con respecto a las otras
dos.

Se ha sugerido que los fibrados de Higgs para formas reales Gr de G definen
(B, A, A)-branas en el espacio de méduli de G-fibrados de Higgs correspondientes
aGgy C G, el grupodual dela formareal G introducido por Nadler [ ]. Esta
conjetura surge de una descripcién en el lenguaje de teoria gauge de la construccién
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del grupo de Nadler, dada por Gaiotto y Witten [ ]. Ver la Seccién 1.4 para
maés informacion sobre el grupo dual.

La teorfa de invariantes de la accion de G® en m® fue estudiada por Kostant
y Rallis [ ]. Su trabajo da una generalizacién del isomorfismo de Chevalley,
probando que el cociente GIT m® J G® es isomorfo a a/Wp, donde a ¢ m® es
una subdlgebra abeliana maximal y Wy es el pequeiio grupo de Weyl asociado
a la involucién © (ver Proposition 1.3.11). Esto permite definir una versiéon de
la fibracién de Hitchin para (G, 0)-fibrados de Higgs, también conocida como
la fibracién de Hitchin para grupos reales o la fibracién de Hitchin para pares
simétricos. Esta version de la fibracién de Hitchin fue introducida en la tesis de
Peén-Nieto [ ], y explorada posteriormente en su trabajo con Garcia-Prada
and Ramanan |[ , ]. Una descripciéon completa de la fibracion
de Hitchin para pares simétricos aparecerd en un trabajo préoximo de Morrissey
y Hameister [ ] (el lector interesado puede consultar la charla de Hameister

[ D

Involuciones en el espacio de fibrados de Higgs multiplicativos

Una involucién 6 € Auty(G) induce involuciones en el espacio de fibrados de
Higgs multiplicativos de una forma muy similar a como lo hace en el espacio
de fibrados de Higgs. Concretamente, para cualquier G-fibrado de Higgs (E, @)
podemos considerar

(E, @) = (B(E), 8(0)*).

Al nivel de las clases de isomorfia, las involuciones 1§ sélo dependen de la clase
a € Outy(G) de 6 en Outy(G), y por tanto tiene sentido denotar §. Al nivel de los
fibrados mini-holomorfos en Y = S! X X, se puede mostrar que estas involuciones
corresponden a

() = ¢.0(8)

donde & — Y denota el fibrado mini-holomorfo correspondiente a (E, @), y (s :
Y — Y son las involuciones

Co:STx X — StxX

(€', x) k> (e*',%).

Los puntos fijos de la involucién 1¢ incluyen a los (G, 8)-fibrados de Higgs multi-
plicativos, que recordamos que son pares (E, @) con E — Xun G®-fibrado principal
holomorfoy ¢ una seccién meromorfa del fibrado de variedades simétricas asocia-
do E(G/G"). Esto tiene sentido porque los (G, 8)-fibrados de Higgs multiplicativos
se extienden naturalmente a G-fibrados de Higgs multiplicativos, ya que la accién
de multiplicacién por la izquierda de G en G/G° se corresponde a la accién de
conjugacién 0-torcida en M® y por tanto G° actia en M® por conjugacion.

Las singularidades locales de los (G, 6)-fibrados de Higgs multiplicativos pue-
den fijarse de una forma similar a como se hace para los G-fibrados de Higgs
multiplicativos. Si restringimos la seccién ¢ a un disco formal en torno a un
punto singular x; € X, obtenemos un elemento del espacio de lazos formales
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(G/G®)(F), bien definido salvo multiplicacién por elementos de G(0). Las G(0)-
orbitas de (G/G®)(F) estdn parametrizadas por cocaracteres antidominantes del
toro Agoe = A/(A N G?), donde A es un toro 8-escindido maximal (esto es, A es
maximal entre todos los toros de G tales que 8(a) = a’! para todo a € A).

A parte de los (G, 0)-fibrados de Higgs multiplicativos, aparecen otros objetos
como puntos fijos de L. Esto es una diferencia esencial entre los casos «aditivo» y el
multiplicativo, que surge del hecho de que, aunque m® es precisamente el conjunto
de los puntos anti-fijos de g por la involucién inducida por 6, el conjunto S°
{s €G:0(s) = s_l} de puntos anti-fijos contiene a la variedad simétrica M®
G/GY, pero también otras componentes, isomorfas a las variedades simétricas
G/GY, paras € S® y 0, = s0(—)s~!. Los otros objetos son por tanto pares (E, @)
con E un G®-fibrado y ¢ una seccién meromorfa del fibrado E(G/G®) con G°
actuando en G/G® por multiplicacién por la izquierda. Los valores posibles de
s que pueden aparecer en los puntos fijos estan restringidos por el valor de los
cocaracteres en las singularidades (ver Corollary 2.3.9).

Como en el caso de los (G, 0)-fibrados de Higgs, se puede construir una aplica-
cién de Hitchin para los (G, 0)-fibrados de Higgs multiplicativos. La construccién
se basa en el estudio de Richardson [ ] de la teoria de invariantes de la ac-
ci6n de G® en MY. Richardson prueba que el cociente GIT M® / G es isomorfo
a A/Wpg, para A un toro 0-escindido maximal, y Wy el pequefio grupo de Weyl
asociado a 6.

e

El punto de vista de las inmersiones simétricas

El «punto de vista de los monoides» para los G-fibrados de Higgs multiplicativos
se puede generalizar a la teorfa de los (G, 6)-fibrados de Higgs multiplicativos si
se consideran inmersiones equivariantes de variedades simétricas. Para acortar, deno-
minamos este tipo de inmersiones simplemente inmersiones simétricas.
Empezamos tomando G que sea semisimple y simplemente conexo, y con-
siderando la variedad simétrica G/G®. Supongamos que L es una inmersién
equivariante de una variedad simétrica O tal que su parte semisimple es igual a
G/GP. Por definicién, la parte semisimple de una variedad simétrica Oy = G1/H;
es el espacio homogéneo G}/(H; N G}), donde G] es el grupo derivado de Gj.
Podemos definir la abelianizacion de la inmersién simétrica £ como el cociente GIT
As = L /| G, que es una Ajx-variedad térica, para Ay = Ox/G. Igual que con
los monoides, decimos que una inmersién simétrica Z es muy plana si el cociente
Y — Ay es plano, dominante y con fibras integras. Un morfismo de inmersio-
nes simétricas L1 — X, es excelente si L1 = X» XAs, Ay, . La categoria de las
inmersiones simétricas muy planas con parte semisimple G/G® y con morfismos
excelentes tiene un objeto universal llamado la inmersion de Guay o la inmersion
envolvente de G/G?, y denotado por Env(G/G?). El toro Afnv(G/Go) es igual a
Agy := A/(ANGg), para A C G un toro B-escindido maximal, y la abelianizacién
Agny(g/ce) es la Age-variedad térica determinada por el semigrupo de pesos

P+(AEIW(G/G9)) = —Z.:,. {5(1, ceey 5(1} ’

para &1, ..., & las raices restringidas simples asociadas a 6 (ver Seccién 1.3).
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Ahora, los S-puntos del stack cociente [Agny (g Go)/Ac,| consisten en pares
(L, s) formados por un Ag,-torsor L sobre S y una seccién s del fibrado asociado
L(Agny(g/ce))- Unpar (x, A) formado por una tupla de n puntos de X y n cocaracte-
res antidominantes de A go naturalmente define un X-punto de [Agny(g/co)/ Aol
tomando L como el Ag,-fibrado definido por las funciones de transicién dadas
por las A; y s la seccién natural que no se anula de

1 n
L(Agnv(G/co)) = @ o (Z<—5Ci,7\j>xi) ,
=1

i=1

que existe como consecuencia de que los A; son antidominantes. El stack de méduli
de los (G, 0)-fibrados de Higgs multiplicativos se recupera entonces como el stack
de las aplicaciones X — [Env(G/G®)/(G® X Ag,)] que cubren la aplicacién natural
X = [Agny(c/G0)/Ace] inducida por el par (x, A).

SINTESIS Y RESULTADOS PRINCIPALES

Esta memoria consiste en tres capitulos, mds esta introduccién y una discusion
final sobre posibles direcciones futuras a seguir basadas en los resulatdos de esta
tesis.

El Capitulo 1 cubre la teoria de las variedades simétricas y sus inmersiones. El
proposito de este capitulo es esencialmente el de dar algunas nociones prelimina-
res necesarias para entender los siguientes capitulos, especialmente el Capitulo
2. En cualquier caso, el capitulo también contiene algunos resultados originales
relativos a la teoria de invariantes de las inmersiones simétricas y la parametri-
zacién de sus lazos formales. Comenzamos revisando algunos hechos generales
sobre grupos reductivos con involucién y explicamos los puntos de vista rela-
cionados relativos a las formas reales y a la cohomologia de grupos no abeliana.
Tras eso, introducimos las nociones de toro 8-escindido y de subgrupo parabdlico
0-escindido y repasamos la construccion del sistema de raices restringidas y sus
reticulos de raices y de pesos asociados. Continuamos revisando la teoria de las
inmersiones equivariantes de las variedades simétricas, originalmente desarro-
llada por Vust [ ] como un caso particular de la teoria mas general de las
variedades esféricas de Luna y Vust [ ]. Repasamos algunas nociones béasicas
sobre variedades esféricas afines y describimos el reticulo de pesos y el semigru-
po de pesos de una variedad simétrica. Recordamos también la definicién y las
propiedades principales del grupo dual de una variedad simétrica. En la Tabla
1.2 resumimos alguna informacién sobre las involuciones de los grupos simples.

El capitulo 1 contintia explicando la construcciéon y las propiedades principa-
les de la compactificacion magnifica de una variedad simétrica, siendo de particular
interés el teorema de estructura local de De Concini y Procesi. Continuamos expli-
cando la teoria de Guay de las inmersiones muy planas de variedades simétricas
[ ]. En particular, repasamos la nocién de la abelianizacién de una inmer-
sidn, la caracterizaciéon de Guay de las inmersiones muy planas, y la construccién
y propiedades principales de la inmersién envolvente de Guay. Terminamos la
seccion demostrando un resultado original, la Proposition 1.6.15, relativa a la
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teoria de invariantes de una inmersion simétrica. En la seccién siguiente, estu-
diamos la parametrizacién de los lazos formales de una variedad simétrica y sus
inmersiones, lo que quiere decir que estudiamos sus espacios de lazos formales
y describimos las 6rbitas del grupo de arcos formales en ellos. En particular, en
la Proposition 1.7.7, generalizamos la Proposition 1.8.6, que es un resultado de J.
Chi [ ]. Concluimos el capitulo revisando la teoria de monoides reductivos
como un caso particular de la teoria de Guay de las inmersiones simétricas.

El Capitulo 2 se centra en los fibrados de Higgs multiplicativos sobre la super-
ficie de Riemann compacta X. Empezamos con una seccién preliminar revisando
la teoria de fibrados de Higgs multiplicativos, tal y como fueron introducidos

originalmente por Hurtubise y Markman [ ], por una parte, y por otra parte
tal y como se desarrollaron independientemente en los trabajos de Bouthier, J. Chi
and G. Wang [ , , , , ] usando el punto de vista de los

monoides reductivos. En particular, comenzamos explicando un punto de vista
muy general relativo a la aplicacién de Hitchin y sus analogos y generalizaciones
sugerido por Morrissey y Ngo [IVIN] (el lector interesado puede consultar la charla
de Ngo [ 1), para posteriormente explicar dos puntos de vista equivalentes
sobre la fibracién de Hitchin multiplicativa. También recordamos los argumentos
de Hurtubise y Markman a favor de la existencia de un espacio de méduli de
fibrados de Higgs multiplicativos simples, y su descripcién del espacio tangente
y, cuando X tiene género 1, de la forma simpléctica holomorfa en el espacio de
moduli.

Continuamos el Capitulo 2 con dos secciones de resultados originales relativos
a nuestra generalizacién de la teoria de fibrados de Higgs multiplicativos de los
grupos reductivos a las variedades simétricas. En la Seccién 2.2 definimos los
(G, 0)-fibrados de Higgs multiplicativos y la aplicacién de Hitchin asociada a ellos,
y mostramos que es equivalente a una aplicaciéon de Hitchin natural que surge de
la teoria de las inmersiones simétricas. Este es el contenido de nuestro Theorem
2.2.5 que es una generalizacién del resultado de Bouthier, Chi y Wang (nuestro
Theorem 2.1.9). También mostramos en la Seccién 2.2 cémo los (G, 0)-fibrados
de Higgs multiplicativos pueden verse dentro del espacio de méduli de los G-
fibrados de Higgs multiplicativos. La tltima secciéon del Capitulo 2, la Seccién
2.3 da una descripcién completa de las involuciones ({ : (E, @) — (6(E), 0(¢)*!)
en el espacio de méduli de G-fibrados de Higgs multiplicativos, y de sus puntos
fijos. Los resultados principales de esta parte son el Theorem 2.3.4 y el Corollary
2.3.9. Concluimos describiendo la interaccién de las 1§ con la forma simpléctica
de Hurtubise-Markman en el Theorem 2.3.10.

El Capitulo 3 estudia la contrapartida del problema estudiado en el anterior
Capitulo 2 desde el punto de vista de los fibrados mini-holomorfos y los mono-
polos. Comenzamos con una seccién que introduce el concepto de un G-fibrado
principal mini-holomorfo sobre Y = S! X X el producto de una circunferencia y
una superficie de Riemann compacta. Este concepto es una generalizacion de la
nocién de fibrado vectorial mini-holomorfo introducida por Mochizuki [ 1.
También introducimos las nociones asociadas del par de Chern, singularidades
de tipo Dirac y la aplicacién de scattering, y explicamos la equivalencia entre
los fibrados mini-holomorfos y los fibrados de Higgs multiplicativos. Los fibra-
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dos principales mini-holomorfos ya fueron considerados en el trabajo de Smith
[ ] (él los llama «estructuras holomorfas»). Sin embargo, aqui tratamos el
tema de una forma diferente, mas intrinseca (ya que no necesitamos emplear re-
presentaciones ni derivadas covariantes en fibrados vectoriales asociados) que,
por lo que sabemos, atin no ha sido presentada en la literatura.

Las secciones siguientes del Capitulo 3 estdn dedicadas al estudio de los mo-
nopolos. En primer lugar, introducimos la ecuacién de Hermite-Bogomolny y
la nocién de monopolo singular, y repasamos los resultados de Charbonneau—
Hurtubise [ ] y Smith [ ], que relacionan los monopolos con los fibrados
mini-holomorfos poliestables. Explicamos también la construccién del espacio de
moduli de monopolos como un cociente kdhleriano, y como un cociente hiper-
kdhleriano cuando X tiene género 1. Finalmente, en la Seccién 2.3.9, describimos
las involuciones { y sus puntos fijos desde el punto de vista de los fibrados mini-
holomorfos, y recuperamos los resultados de la Seccién 2.3 en la Proposition 3.4.3
y en la Proposition 3.4.4. La seccién termina con la descripcién de las involuciones
en términos de monopolos singulares, y describiendo la interaccién de las invo-
luciones con la estructura hiperkdhleriana del espacio de méduli de monopolos,
cuando X tiene género 1.

La memoria concluye con una exploraciéon de diferentes direcciones futuras
de investigacion que podrian ramificarse a partir de esta tesis. Comenzamos con
varias conjeturas (las Conjectures 1, 2 y 3) relativas a posibles analogos de los
resultados de Donagi—Pantev sobre la dualidad de los sistemas de Hitchin para la
fibracién de Hitchin multiplicativa. La demostracién de estas conjeturas es el con-
tenido de trabajo préximo conjunto con Benedict Morrissey [M]. Continuamos
sugiriendo algunos problemas y preguntas relativos a la descripcién de la aplica-
cién de Hitchin para (G, 6)-fibrados de Higgs a través del estudio de los cocientes
regulares, en el sentido de Morrissey y Ngo [N, ] de la variedad simétrica
G/G® y de la inmersién envolvente Env(G/G®) por la accién de G°. En particular,
planteamos la cuestion de la existencia de una seccién transversal del cociente GIT
G/G® — (G/G?) J G que generalice la seccién de Kostant-Rallis section [ |
y la seccién transversal de Steinberg [ ]. En las Questions 2 y 3 proponemos
el estudio de una posible generalizacion de la teoria de Guay de las inmersiones
muy planas de variedades simétricas al contexto mas general de las variedades
esféricas. En el Problem 2, sugerimos la existencia de una descripcién distitna de
los fibrados de Higgs multiplicativos en términos de teoria gauge que, a diferencia
de la teoria de monopolos singulares, estd definida intrinsecamente en la super-
ficie de Riemann X y no necesita utilizar el producto con la circunferencia S!, al
menos explicitamente. Esperamos que esto pueda hacerse mediante el estudio de
las estructuras kdhlerianas en los monoides muy planos y sus correspondientes
aplicaciones momento para la accién del subgroupo compacto maximal K de G,
y aplicando la teoria de pares desarrollada por Mundet i Riera [ ]. Termina-
mos el apartado de direcciones futuras proponiendo el estudio de un «lado de de
Rham» en el espacio de méduli de monopolos singulares. Otra direccién intere-
sante posible, que no incluimos en esta seccién ya que la dejamos completamente
inexplorada, es la posible aplicacién de los resultados de esta tesis a una versién
«relativa» (en el sentido de Ben-Zvi—Sakellaridis—Venkatesh [ ]) del Lema



SINTESIS Y RESULTADOS PRINCIPALES 45

Fundamental de Langlands—Shelstad para variedades simétricas, generalizando
la tesis de G. Wang [ ].

Por comodidad, en los Capitulos 1 y 2 trabajamos en el contexto algebraico
en vez de en el contexto holomorfo (que es equivalente). Esto es, consideramos
que G es un grupo algebraico reductivo sobre C y que X es una curva compleja
proyectiva lisa, en vez de considerar un grupo reductivo complejo y una superfi-
cie de Riemann compacta, respectivamente, y consideramos fibrados principales
algebraicos (en vez de holomorfos) sobre X. La equivalencia de ambos contextos
es una consecuencia del GAGA de Serre [ ]. Se sigue del hecho de que todos
los argumentos de estos capitulos son algebraicos que todo lo que hay en ellos
(a excepcion de los comentarios relativos a formas reales) sigue siendo cierto si
sustituimos C por cualquier cuerpo algebraicamente cerrado de caracteristica 0.






THE THEORY OF SYMMETRIC VARIETIES

1.1 REDUCTIVE GROUPS AND HOMOGENEOUS SPACES

Linear algebraic groups and the Jordan decomposition

A group scheme over C is a group object in the category of schemes over C. A linear
algebraic group over C is a smooth and affine group scheme over C of finite type.

The paradigmatical example of a linear algebraic group is the general linear
group GL,, whose closed points are the complex invertible matrices. In fact, every
linear algebraic group G admits a closed embedding i : G <— GL,. A very useful
consequence of this is that linear algebraic groups admit a Jordan decomposition.

The Jordan decomposition in linear algebra states any complex matrix M can be
decomposed as M = D+N, for D a diagonalizable matrix and N a nilpotent matrix.
At the level of GL,,(C), this implies that any invertible matrix A decomposes as
A = DU, for D an invertible diagonalizable matrix and U an unipotent matrix
(meaning that U — I,, is nilpotent). This can be extended to linear algebraic
groups. An element g € G is semisimple or diagonalizable if i(g) is diagonalizable,
and unipotent if i(g) is unipotent. This notion can be shown to not depend on the
choice of the embedding, and any element g € G decomposes as g = g*g", for
g® semisimple and g* unipotent. Some modern references covering the basics
about linear algebraic groups are Conrad’s lecture notes [ ], and the books
of Milne [ ] and Humphreys [ I

Algebraic homogeneous spaces

Let G be a linear algebraic group over C and L be a complex algebraic variety.
We say that L is a (left) G-variety if it is endowed with a (left) action of G, that
is, with a morphism p : G X L — X such that p(1,x) = x, for all x € %, and
p(g1,p(g2,%x)) = p(g192,x). We usually write g - x for p(g,x). Similarly, one can
define right G-varieties and right actions.

A geometric quotient /G of a G-variety X is a variety defined as the orbit space
X /G equipped with the quotient topology and the structure sheaf Oy ;g defined as
the direct image of the sheaf @ZG of G-invariant regular functions on . Geometric
quotients do not exist in general, but they do in some cases. In particular, if L is
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an affine variety and C[X] is its ring of regular functions, then, if G is reductive
(defined below), we can put £ / G = Spec(C[Z]®), which is again an affine variety,
called the GIT quotient of £ by G.

Let G be a linear algebraic group and H C G a closed subgroup, which acts
on H by right translations. In this case the geometric quotient G/H is always
known to exist, and it is a quasiprojective variety (see [ , Theorem 1.3]). An
(algebraic) homogeneous space O is a G-variety such that the action of G on O is
transitive. If x € O is any point, we can consider the orbit map G — O sending
g € Gto g-x. If we take H = Gy to be the stabilizer of x, then the orbit map G — O
factors through a map G/H — O. If the orbit map is separable (which we always
assume), then the map G/H — O is an isomorphism. If the group H is reductive,
then G/H = Spec(C[G]") is affine.

Algebraic tori, characters and cocharacters

A complex algebraic torus of rank r is a linear algebraic group T over C isomorphic to
(C*)". A character of a complex algebraic torus T is a homomorphism of algebraic
groups X : T — C*, whereas a cocharacter is a homomorphism A : C* — T. We
denote by X*(T) and X.(T) the sets of characters and cocharacters of T, respectively.
These are the character lattice and the cocharacter lattice. Indeed, it is clear that both
X*(T) and X.(T) are free abelian groups of rank r. Moreover, the two lattices X*(T)
and X.(T) are in duality, identified by the perfect pairing

X(T) x X(T) — Z
X A) — (XA,

for (x, A) such that
(x o M(z) = 2%,

for every z € C".

The Lie algebra t of a complex algebraic torus T of rank r is isomorphic to C".
The differential of a character T — C* defines an element of t*, so we can regard
X*(T) as a sublattice of t*. On the other hand, the differential of a cocharacter
C* — T can be seen as an element of t, and we can regard X.(T) as a sublattice
of t. The closed points of the torus T can be identified with t/X.(T), whereas the
quotient t*/X*(T) defines the dual torus TV of T.

Along this document we use the additive notation for characters and cochar-
acters, by regarding elements x € X*(T) and A € X.(T) as elements of t* and t,
respectively, and denoting the corresponding maps T — C*and C* — Tast — tX
and z > z*. This notation makes sense if we pick isomorphisms of t and t* with
C" and of X*(T) and X.(T) with Z". In that case, if we let x = (x1,...,Xr) and
A=(1,...,Ar)forthe A;,xi € Z,and t = (t4,...,t;), then

— $X14X2 X A _ (A A
tX =t ...t77 and 2% = (2M,...,2"").

Reductive groups

Let G be a connected linear algebraic group over C. The radical of G is the (unique)
maximal connected solvable normal closed subgroup R(G) c G. If R(G) is trivial,
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G is semisimple. Semisimple groups turn out to be products of simple groups
(with some amalgamation of finite centres), of which the classification in terms
types Ay, By, ..., Gy is well known.

The radical R(G) of a linear algebraic group G is again a linear algebraic group
and as such it admits a Jordan decomposition into a semisimple and a unipotent
part. The unipotent part G* = R*(G) of the radical is called the unipotent radical of
G. On the other hand, the semisimple part Z of the radical R(G) is diagonalizable,
so G acts trivially on it by conjugation. Therefore, Z is contained in the centre of
G, Zg = {z€G:[z,g] =1,Vg € G}. By the maximality and the connectedness
assumptions on R(G), it follows that Z = ZOG is the neutral connected component
of the centre Zg.

The group G is reductive if its unipotent radical G" is trivial or, equivalently if
it radical R(G) is a complex algebraic torus. More precisely, the radical R(G) of a
reductive group G is the torus Z = Z%. Therefore, the derived subgroup of G

G’ ={[g,h]:ghe G} =G/Z
is semisimple, and G decomposes as a semidirect product
G=GZ
In general, every linear algebraic group G over C admits a Levi decomposition
G =LG"

as a semidirect product of a reductive subgroup L, called the Levi factor of G, and
the unipotent radical G".

Amongst all the subgroups of a reductive group G, maximal tori and Borel
subgroups are of particular interest. A torus A C G is a subgroup of G isomorphic
to a complex algebraic torus, and a maximal torus T C G is one which is maximal
among those with that property. A Borel subgroup B C G is a maximal connected
solvable subgroup of G. It is a fact that all Borel subgroups and all maximal tori
are pairwise conjugate. The rank of the reductive group G is by definition the rank
of a maximal torus T C G.

The subgroups P C G that contain a Borel subgroup are called parabolic sub-
groups, and they are characterized by the property that the homogeneous space
G/P is a projective variety. These projective varieties are called flag varieties, and
the projective variety G/B, obtained as the quotient of G by a Borel subgroup, is
maximal among them, and it is called the complete flag variety.

The Levi subgroups of a reductive group G are also important. These are the
subgroups L C G of the form L = Cg(A), for A C G any torus. Since the radical
of Cg(A) is equal to A, the Levi subgroups are reductive. In particular, if T is a
maximal torus, then Cg(T) is nilpotent and thus solvable, therefore it is a torus,
and in turn Cg(T) = T. In general, the Levi subgroups L € G can be characterized
as those obtained from parabolic subgroups via Levi decomposition

P =LPY,
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Given a parabolic subgroup P C G with Levi decomposition P = LP", we say that
another parabolic subgroup P~ C G is opposite of P if the intersection P N P~ is
the Levi subgroup L. The Levi decomposition of a Borel subgroup B is B = TBY,
for T € G a maximal torus, and B N B~ = T. One last thing to note is that, since
any character P — C* must send the unipotent radical to the unipotent part of
C*, which is trivial, the set X*(P) of characters of P coincides with the set X*(L) of
characters of its Levi factor. In particular, we have X*(B) = X*(T).

Root systems

We recall now the basics of root systems.

Let (E,(,-)) be a finite-dimensional Euclidean vector space. Recall that a
(crystallographic) root system in E is a finite subset ® C [E, whose elements are
called roots, such that:

1. The roots span E.

2. For any two roots «, 3, the vector s«(3) = 3 — Z%a isin @.

3. For any two roots «, 3, the number 2( B; is an integer.
We say that a root system is reduced if the only scalar multiples of a root « that
belong to @ are « and —«. In any case, note that even if ®@ is nonreduced, the only
multiples of a root « that can belong to ® are +«, J_r%oc or +2«, since

(o, Acx) “ox and 2 AN (o, Acx)

2(oc,oc) (Ao, Ax)

=2/A
must be integers.

Given a root system @, one can fix a subset ®* of positive roots which is closed
under the sum and such that for each « € @ either « or —« belong to ®* (but
not both). When © is reduced, the indecomposable elements of ®* form the set
of simple roots A, and every root « € @ can be written as a linear combination of
elements in A with integer coefficients. Fixing a set of simple roots A is equivalent
to fixing the positive roots @*. This choice is unique up to the action of the Wey!
group of ®, which is the finite group W generated by the reflections s. This
group naturally acts on [E, and its fundamental domains are the Weyl chambers,
which are the connected components of the complement of the union of the
hyperplanes perpendicular to each root & € ®. Given a choice of simple roots A,
the corresponding dominant Weyl chamber is the one defined as

={veE:(v,a) >0,V € A}.
One can also consider the anti-dominant Weyl chamber
={veE:(v,a) <0,V A},

which is related to C} by the longest element of W, which is the element wy of
maximal length as a word in the s, for o € A.
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To any root system @ in (E, (-, -)), one can associate its dual root system
d)v:{ocvelE*:oced)},

where «V is the coroot of «, defined as

vV _ (v, ®)
(v, >_2(oc,oc)

for any v € E. Here, (-,-) denotes the duality pairing of E and E*. From the
definition of a root system, it is clear that this duality pairing restricts to a pairing
(-,y: @ X DY — Z. When © is reduced, the simple coroots A¥, which are the duals
of the simple roots, give the simple roots for the root system ®".

The root and weight lattices of a root system @ are, respectively

R(D) =7Z{D) CE
P(D) = {v eE:(v,a')eZ Ve d)} .
We can also consider the coroot and coweight lattices, respectively,
RY(D) = R(DY) =Z(DY) C E*
PY(D)=P(DY)={veE :(xVv)€ZVue D}.

Note that the pairing (-, -) defines a perfect pairing between the root lattice and
the coweight lattice, and between the weight lattice and the coroot lattice.

The elements of the intersection P,(A) = P(®) N C} are called the domi-
nant weights of @. This intersection is a semigroup spanned by some elements
w1, ..., wn called the fundamental dominant weights. That is, we have

j)+(A) = Z+<(U], cecy wn>/
P(D) = Z{w1,...,wn).

Dually, and assuming that AV defines a set of simple coroots, we can consider the
intersection

PUA)=PY(@)NChy = {AePY(D): (A, &) >0,Vx € A}.

This is the set of dominant coweights of ®. Again, this set is a semigroup spanned
by some elements Ay, ..., A called the fundamental dominant coweights, and

PUA) = Zi(M, . A,
P(D) = Z(\1, ..., An).

A choice of the simple roots A also determines an order on [E, and thus also
on P(®) and R(®D), given by

v >V ifand only if v -V € Z.(A).

Note that, if ® is a nonreduced root system, and « is a root with 2cc € ® then
(2x)Y = ¥ /2. Thus, when @ is nonreduced, in order for the above definitions to
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work properly, we need to define the simple roots as the union of the indecompos-
able elements with their positive multiples that belong to @. Given that definition,
the dual simple roots A will be simple roots for ®" and we will be able to define
Weyl chambers and fundamental and dominant weights and coweights just like
in the reduced case. Note that this change in the definition does not change the
Weyl group, since the reflection associated to « is the same that the one associated
to 2«x.

Finally, we consider the multiplicative invariants of a root system. By this we
mean the ring C[e”®)]W of W-invariants of the group algebra of the weight lattice
C[e”(®)]. We write e”(®) in order to regard the weight lattice as a multiplicative
abelian group, rather than an additive one. Now, given any element a € C[e”(?)],
which is of the form

a= Z ape®,

WEP(D)

we define the weights of a to be those w such that a,, # 0. The maximal elements
among these weights are called the highest weights of a. The main result here is
the following; we refer to [ , V1.3.4 Theorem 1] for a proof.

Proposition 1.1.1. Let @ be a reduced root system, with A C © a choice of simple roots.
Let wyq, ..., wn be the corresponding fundamental dominant weights of ®@ and, for each
i, let a; € C[e™® W be a W-invariant element with unique highest weight w;. Then,
there is an isomorphism

C[e”®TW «~ C[ay, ..., an].

The root system of a reductive group

Let G be a reductive algebraic group over C. There is a natural root system
associated to the group G, or rather, to its Lie algebra g. Indeed, if we take a
maximal torus T C G, the roots of g are the weights of the adjoint action of T in g;
that is, the set of roots of g is the following

Oy ={oce X(T): Ix e g\ {0},Ad(x) =t*x,Vte T}.

For each o € @4, we denote by g« the subspace of g formed by the x € g such that
Ad¢(x) = t*x for every t € T. This gives a decomposition

It is easy to show that @ satisfies the axioms of a reduced root system. Moreover,
the Weyl group of @, can be identified with

Wy = Ng(T)/T.

A choice of positive roots ®; C @4 determines a Borel subgroup B ¢ G and
viceversa. This Borel subgroup B is the one with Lie algebra
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so its unipotent radical is b" = @ sep+ 9a-  The choice of the positive roots
g

determines a the simple roots A; = {«4,..., &}, for r the rank of G. More
generally, if P is any parabolic subgroup containing B, then its Lie algebra is of
the form

for @ the root system spanned by some subset of the simple roots I € A4, If
P = LP" is the Levi decomposition of P, the Lie algebras of these components are

I:t@@g“ and p“ = @ G-

xXED] XED\DF

The root lattice R(Dy) is equal to X*(T2) the set of characters of the torus
Tad = T/Zg, the maximal torus of the adjoint form of g, Gad = G/Zg. Moreover,
if G is semisimple, the weight lattice P(®,) is equal to X*(T*), for T the maximal
torus of G°¢, the simply-connected group isogenous to G. Dually, the coweight
lattice PV (D) is equal to the cocharacter lattice X.(T??), while the coroot lattice
RY(D,) is equal to X.(T*).

If G is semisimple, we have the natural exact sequences

1 — m(G) —— Ts¢ > T > 1,

1 > ZG > T y Tad > 1,

which in turn induce the exact sequences

1 — Xd(T*) = RY(Dy) ———— X(T) ——— m(G) —> 1,

1 —— X(T) ————— Xu(T2d) = PV (D) WAe > 1.

Therefore, we can recover the centre Zg and the fundamental group 71(G) as the
quotients
Zg =P (@g)/X(T), and 7 (G) = X.(T)/RY(Dy).

Root groups and pinnings

Let G be a reductive group over C and T C G a maximal torus. Consider @,
the corresponding root system. For any root « € @4, we can consider a non-zero
element ey € g«. Such an element determines an embedding uy : C — G with
the property that

tua ()t = ug(t*z),

for every t € T and z € C, by putting u«(z) = exp(ze«). The image Uy = uq(C) is
called the corresponding root group. Note that e, can be recovered from 1.
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Apinning of Gisatuple (B, T, {e(x tX € Ag}), where B C G is a Borel subgroup,
T C B a maximal torus, A, is the set of simple roots determined by B and T, and
ex € g« is a non-zero vector. Pinnings rigidify the group G, meaning that the
only automorphism of G preserving a pinning is the identity. Moreover, any
two pinnings of G differ by an inner automorphism; that is, if (B, T, {e«}) and
(B’, T/, {e),}) are different pinnings, then there exists some g € G such that

B'=gBg™!, T'=gTg™!, and {e,} = Adg{eq}.

Moreover, the inner automorphism given by conjugation by g is uniquely deter-
mined by the two pinnings; meaning that a different g’ giving the same would be
in the centre.

Some representation theory

A (rational) representation of a linear algebraic group G, or a G-module is a (finite
dimensional) complex vector space V endowed with a homomorphism of linear
algebraic groups G — GL(V). A G-module is simple or irreducible if it has no
proper nontrivial G-submodule. If G is a reductive group, then any G-module V
decomposes as a sum of simple G-modules. In fact, this property characterizes
reductive groups [ , Theorem 22.42].

Given any two G-modules V and W, the multiplicity of V in W is the number

my (W) = dim Homg(V, W).

If G is reductive, then any G-module W decomposes as

w= H mvwv.

V simple

If ¥ is a G-variety, then the ring of regular functions C[X] is naturally a G-module,
and we abbreviate, for any G-module V,

my(Z) = my(C[Z)).

If H ¢ G is a closed subgroup of G, we can consider the induction functor
Indﬁ : H-modules — G-modules and the restriction functor Resﬁ : G-modules —
H-modules. For any G-module V, the restriction Resﬁ(V) is just the same vector
space, now regarded as an H-module. On the other hand, if V is an H-module, we
put Indﬁ(V) = Homp (G, V). In particular, note that Indﬁ(C) = C[G]" = C[G/H].
Frobenius reciprocity implies that these two functors are adjoint, meaning that, for
any G-module V and any H-module W, there is an isomorphism

Homg(V, Indﬁ W) = HomH(ResSl V,W).
As a particular case we have

Homg (V, C[G/H]) = Homg(V,Ind{(C)) = Homy(Ress; V, C) = (VH™.
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Therefore,
myv(G/H) = dim(V)™.

The Lie-Kolchin theorem asserts that a representation of a solvable linear
algebraic group over C has an invariant line. In particular, if G is a reductive
group, then every G-module V contains at least a B-eigenvector, that is, an element
v € V such that there exists a character x : B — C* such that b - v = x(b)v. We say
that such a x is a weight of V. If a G-module is generated by a B-eigenvector v as a
G-module, then v is called a highest weight vector of V, and its weight x is the highest
weight of V. Indeed, this weight is the highest in the sense that any for any other
weight 11 of V, we have x > n (that is, x — 1 is a positive integer combination of
simple roots). Conversely, one of the most important results in the representation
theory of reductive groups is that, if T C B is a maximal torus, for any dominant
character x € X*(T), there exists a unique, up to isomorphism, G-module V, with
highest weight x (see [ , Section 31]). A nice consequence of this is that the
ring of regular functions of a reductive group splits as a (G X G)-module as

clcl= P Endv= P viev= P VeV,

V simple V simple xeX*(T)

Root data and the Langlands dual group

A (reduced) root datum is a tuple (X*, @, X., @"), with X* and X, lattices in duality
with respect to a perfect pairing (-,-) : X* XX, = Z and ® c X" and @' c X.
subsets with a fixed bijection ® — @V, which we denote by o — «V, such that @
is a reduced root system on X* ®z R and @V is the dual root system. If we take a
set of simple roots A € @ and its dual AY c @Y, the tuple (X*, A, X., AY) is called
a based root datum.

For any reductive group G and any choice of a Borel subgroup B C G and
of a maximal torus T ¢ B C G, we can take @1 c X*(T) the root system of
T and Ag 1 C @7 the simple roots determined by B. The tuple ¥(G,B,T) =
(X*(T),AB,T,X*(T),A\];’T) is called the based root datum of (G,B,T). One can also
give a natural notion of a morphism of based root data. For any other choice of
Borel subgroup B’ and maximal torus T’ the root data W(G, B, T) and ¥(G, B/, T')
are canonically isomorphic, and one can define the based root datum of G to be the
projective limit ¥(G) of all the based root data for different choices of B. There is
a natural isomorphism Aut(¥) = Out(G).

Based root data are well known to classify reductive groups and thus, for any
reductive group G with based root datum ¥(G) = (X*, A, X,,AY), we can define
the (Langlands) dual group of G to be the reductive group G with based root data
Y(G) = Y(G)Y = (X,,AY,X*,A). The geometric Satake correspondence | , ]
recovers G as the Tannaka group of the neutral Tannakian category of perverse
sheaves on the affine Grassmannian Grg (defined below in Section 1.7).

Tits systems

The role played by the root system, the Borel subgroup and the maximal torus of
a reductive group is so important in the determination of its structure that these
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notions can be abstracted and applied in a wider spectrum of cases. This is the
theory of Tits systems or BN-pairs.

A Tits system (©,B,N, S) consists of a group ®, subgroups B and N and a
finite subset S C 9t/(B N'N) satisfying the following axioms:

1. BNt isanormal subgroup of Nt and S generates the Weyl group W = 9 /BNN.
2. B and N generate ® as a group,

3. forany s € S, sBs™1 ¢ B, and
4

. for every w € Wand s € G, if n,,,ns € N are representatives of w and s,
respectively, we have

(BngB)(Bn,,B) C (Bn,B) U (Bngny, B).

The paradigmatical example is of course taking ® = G to be a reductive group,
B = B ¢ GaBorelsubgroup, 9t = Ng(T) the normalizer of a maximal torus T C G,
so that W = 9t/(BNN) = N/T is the Weyl group, and S is the set of the reflections
s«, for « € Aq the simple roots.

The axioms of a Tits system allow to generalize a lot of properties of reductive
groups to any Tits system. The formal loop groups considered in this document
are nice examples of these groups that, although they are not reductive, admit
the structure of a Tits system. Of all the properties that one can generalize, we
are mainly interested in the Bruhat decomposition: if (®, B, 9, S) is a Tits system,
then

G=| | Bws.

1.2 SOME GENERALITIES ON INVOLUTIONS

Involutions and the twisted conjugation action

Let G be a reductive algebraic group over C. By an involution of G we mean an
order 2 automorphism 6 € Auty(G). To any such involution we can associate the
subgroups

G%={geG:0(g) =g},
Go = {ge G:g0(g)! EZG}.

The group G° is the group of fixed points of 8, and we can also consider the
group Gg = (G99, which is the neutral connected component of G 9, If G is of
simply-connected type, then G® is connected, so G§ = G? (this is not immediate,
and we refer to [ , Theorem 8.1] for a proof). The group G is in fact equal to
the normalizer Ng(G®) of G®. The inclusion G € Ng(G?) is immediate, while
the other inclusion follows from the fact that elements of the form g0(g)~! act
trivially by conjugation on G® and, if we take the Cartan decomposition

g=g% ®m®
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into g® = Lie(G®) the +1-eigenspace of @ and m® the —1-eigenspace then, for every
x € m® and every g € Ng(G?), we have

~Adg(x) = 0(Adg(x)) = —Adp(g)(x),

and thus Adgg(g)-1(x) = x, s0 g9(g)~! € Zg.
An involution 0 of G determines the 0-twisted conjugation action of G on itself

GxG—G
(g,s) —> g=*o s = gsd(g) ™"

For each s € G we denote by 10 : G — G the map 19(g) = g ¢ s sending G to
the 0-twisted G-orbit T2(G) = G #¢ s. We also denote these 0-twisted orbits by
M? = 1%(G). In particular, we denote 1° = T? and M® = 1°(G). One can easily
check that the isotropy subgroup of s € G is the fixed point subgroup G®: of the
automorphism

0 = Intg 00.

Here, Int; stands for the automorphism of G given by conjugation by s; the
elements of this form are the inner automorphisms, that form a subgroup Int(G) C
Aut(G).

From the above, we conclude that the 6-twisted orbits M¢ are homogeneous
spaces of the form G/G®%:. Moreover, this identification is G-equivariant for the
O-twisted conjugation action on MY and the natural left multiplication action on
G/GY%. In particular, M® is naturally G-isomorphic to G/G®. We can pose the
question of for which s € G the automorphism 0 is an involution. A simple
computation shows that 62 = idg if and only if s0(s) is an element of the centre
Zg. The set of such s is denoted by

So={seG:s0(s) € Zg}.
For s € Sg, the 0-twisted orbit M{ gets explicitly identified with M®s as
MY = M.

In particular, note that if s € M?, then MP%ss = Mg = M9, so for s € M? the
homogeneous spaces G/G® and G/G®s can be identified. Moreover, if s = g6(g)~!,
we can write 65 = Intg 00 o Int;1 and G% = Inty(G°).

It makes sense then to define an equivalence relation ~ on Aut,(G) :

0 ~ 0’ if and only if there exists « € Int(G) such that 8 = x 060 o},
and describe the quotient set Auty(G)/~. We recall the description given in
[ ] in terms of what they call the "clique map".
The clique map

The natural projection 7 : Auty(G) — Outy(G) := Auty(G)/Int2(G) factors through
Auty(G)/~. Indeed, this follows from the fact that

Intg ofo Int;1 = Int )1 00.

go(g
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Therefore, we obtain a surjective map
cl: Autr(G)/~ — Outr(G),

called the cligue map. The inverse image cl™(a) of a class a € Outy(G) is called
the clique of a. It is easy to check that for any 0 € 7~!(a) the clique ™ Y(a) is in
bijection with the orbit set Sg/(G X Zg), where (G X Zg) acts on Sg through the
natural extension of the 6-twisted conjugation action

(GXZg)xG—G
((Q,Z), S) — (9/ Z) *9 S = nge(g)‘l.

Nonabelian group cohomology

The 0-twisted conjugation action clearly preserves Sg and also, for each z € Zg,
the subset
SO = {s € G:s6(s) =z} C Se.

In particular, it preserves the subset of “anti-fixed" points of 0,
Se:S?:{seG:s:G(s)_l}.

Now, as explained in [ ], the orbit sets S®/G and Sg¢/(G X Zg) can be
interpreted in terms of nonabelian group cohomology [ , Section 5.1]. We recall
the main definition here.

Definition 1.2.1. Let I' and A be abstract groups with an action of I' on A. We
denote H(T, A) = AT the set of fixed points. A 1-cocycle of T'in Aisamapy — ay
from I to A such that

Qyy = ay (Y - ay)
for any y,y’ € T. The set of 1-cocycles is denoted by Z!(T', A). We obtain H}(T, A)
the first cohomology set of T in A as the quotient of Z!(T", A) by the equivalence
relation

a ~ a’ if and only if there exists some b € A such that @/, = ba, (y - b)™".

When A is an abelian group, we can extend this definition to consider higher
order cocycles and cohomology groups, and recover the well-known theory of
group cohomology. For convenience, we recover the definition of order 2 group
cohomology from this point of view.

Definition 1.2.2. Suppose that A is abelian. A 2-cocycleof I'in Aisamap (y1,v2) —
Cyi,v, form ' X T to A such thatc, 1 =c¢1, =1and

(Y ey v )y vy = CyyrCyyyr

for any y,v’,v” € T. We denote the group of 2-cocycles by Z2(T", A). Now, for any
map a : ' = A we can consider the corresponding 2-coboundary da € Z3(T, A)
such that

(da)y,v, = (v1 - aly2))aly1v2) taly1)
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for any y1,v2 € T. The group of 2-coboundaries is denoted by B%(T", A) and we
recover the second cohomology group of I' in A as the quotient

H2(T, A) = Z2(T, A)/B%(T, A).

Taking I' = Z/2 = {+1}, A = G and the action of Z/2 on G the one defined by
—1 — 0, we can consider the corresponding cohomology set, which we denote
by Hé(Z/Z, G). We can also take A = G® = G/Zg, and the cohomology set
Hle(Z /2, Gad), Finally, if we take A = Zg, we can also define the second cohomol-
ogy group H3(Z/2,Zg). As is usual in cohomology theories, one can show that

the short exact sequence 1 — Zg — G — G*! — 1 induces a long exact sequence
in cohomology

Hy(Z/2,Z6) — H{(Z/2,G) — Hy(Z2/2,G™) —— H3(Z/2, Zg).

We can make sense of this by noting that the nonabelian group cohomology sets

are pointed sets, where the special element is the constant cocycle with value 1.
Observe that any map from Z,/2 is determined by the image of —1, so one can

easily show that the cocycles for the cohomology sets considered above are

Zy(Z2/2,Z6)={z€Zg:20(z) =1} =Zg N S°
Zy(2/2,G)={s € G:s0(s) =1} = S°

25(7/2,G*) = {s € G:50(s) € Zg} = So

Z3(Z2/2,Zc) ={z€ Zg :0(z) =z} = Zg N G°.

Now, the equivalence relation in the sets of 1-cocycles can inmediately be un-
derstood as the relation of being in the same 0-twisted G-orbit and the coboundary
group Hé (Z2/2,Z¢) is identified with the subgroup of elements of the form z6(z)
for z € Zg. Thus, we get

Hy(Z/2,Z¢) ={z € Zg : 20(z) = 1} = (Zg N $°)/G

H§(Z/2,G) ={s € G:s0(s) =1} = S°/G
HY(Z/2,G™) = {s € G : 50(s) € Zg} = S /(G X Zg) = I (7(0))
H3(Z/2,Zc) ={z € Zg : 0(z) =z} = (Zc N G°)/{z0(2) : z € Zg}.

In these terms, we can understand the maps giving the above long exact sequence
as follows. The map Hé(Z/Z,Zg) — Hé(Z/Z,G) sends any 0-twisted G-orbit
G *g z of an element z € Zg N S° to itself. The map Hé(Z/Z, G) — Hé(Z/Z, Gad)
sends a O-twisted G-orbit G #¢ s to the bigger G X Zg-orbit (G X Zg) *¢ s. Finally,
the map H%(Z/Z, G) — Hé(Z/Z,ZG) sends an orbit (G X Zg) *¢ s to the class of
the element s8(s) € Zg. Indeed, this is well defined since, if s’ = zgs0(g)~" for
some z € Zg and g € G, then s’0(s") = z0(z)s0(s).

We end our comments on nonabelian group cohomology by mentioning that
it follows from a theorem of Richardson [ ] that there is a finite number of
0-twisted G-orbits on $®, and thus all the cohomology sets mentioned above are
finite.
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Real forms

Let Gr be a linear algebraic group over R. We define its complexification to be the
base change G¢ = GR Xspec R Spec C, which is a linear algebraic group over C.

Definition 1.2.3. Let G be a linear algebraic group over C. A real form of G is a
linear algebraic group Gr over R endowed with an isomorphism G¢ — G.

Equivalently, a real form of a complex group G is given by a conjugation
o € Conj(G). This is an involutive anti-holomorphic automorphism of G. The
real form GRr is recovered as the fixed point subgroup Gr = G°. By similar
arguments to the ones given above, two real forms G and G are conjugated by
some element g € G if and only if the two conjugations o and o’ are conjugated by
the inner automorphism Inty. Therefore, we say that two real forms o and o’ are
equivalent if and only if there exists some inner automorphism « € Int(G) such
that

o’ =aocoal.
Up to this notion of equivalence, real forms are classified by the nonabelian
group cohomology set H.(Z/2, G?). Noting that the Galois group of C over R
is Gal(C/R) = Z/2, this cohomology set is by construction the nonabelian Galois
cohomology set
HY(C/R, G?) := HL (Gal(C/R), G9).

See [ ] for further reference on Galois cohomology.

Definition 1.2.4. A compact real form Gr of a complex linear algebraic group G
is a real form Gr that is compact and meets every connected component of G.
Equivalently, if G is a compact real form of G and Gr = G° for some o € Conj(G),
we say that o is a compact real form of G.

Every complex reductive group G admits a maximal compact subgroup K C G,
which is in fact a real form of G, called the compact real form. We denote by ok the
corresponding conjugation. Every other compact real form is equivalent to this
one.

Given any involution 6 € Auty(G), we can choose a maximal compact subgroup
K C G that is 0-stable, that is, such that 6(K) c K. Equivalently, we can choose ok
commuting with 6, thatis ox 00 = 0 0 okx. The composition og = ok 06 is another
real form, which we call the Cartan real form associated to 0. Reciprocally, given any
real form o we can find some involution 8, € Aut,(G), called the Cartan involution
associated to o, commuting with o, and such that o o 0 is a compact real form.
Moreover, this 0, is unique up to conjugation by inner automorphisms. This
gives the Cartan classification of real forms, which cohomologically can be written
as a bijection

HL(Z/2,G*) = HL(Z/2, G™).
More generally, in [ ], Adams and Taibi show the existence of a bijection
HL(Z/2,G) = H}(Z/2, G).

We refer to Section 10 of their paper for tables with H{(Z/2, G) computed for G
semisimple simply-connected.
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Examples

Example 1.2.5 (The diagonal case). Groups with involution are in a certain sense
a generalization of groups. Indeed, if G is any linear algebraic group, we can
consider the pair (G X G,©), where © € Auty(G X G) is the involution ©(g1, g2) =
(g2,91). Let us denote by A : G — G x G the diagonal map A(g) = (g,g) and
by A the antidiagonal A(g) = (g, g™'). The fixed point subgroup (G x G)® is the
diagonal A(G), which can be naturally identified with G, whereas the orbit M®
is the antidiagonal A(G), which is again identified with G. The set of anti-fixed
points S is easily shown to be equal to M®. We also have

(GXG)e ={(z9,9): g € G}, and Sg = {(zg,g_l) tg € G}.
Therefore, the orbit sets S®/(G X G) and Se/(Z X G X G) are just singletons. The
real form of G X G corresponding to © is simply the group G regarded as a real
group.

Example 1.2.6 (G = SL,(C),n > 2). In this case we have Out(G) = Z/2, so we
distinguish two cases for a € Outy(G), a =1 and a = —1. For a = 1 we have

cl_l(l):{Gp,q:OSPSan,p+q:n},

(1, 0
ba=lo -1,/

where I, denotes the identity matrix of rank p. The compact real form of SL (C)
is SU(n), which sits inside SL,,(C) as the fixed points of the conjugation ox(g) =
(g")~!, where T stands for taking transpose and complex-conjugation. Therefore,
the real forms corresponding to the involution 6y, q is 0p,q(g) = Ip q(g") 1} q-
The corresponding groups of fixed points are

Gep,q = S(GLP(C) X GLq(C)) and G4 = SU(p, q)

Here, the S stands for taking the subset of matrices of determinant equal to 1.
Consider now the case a = —1. The clique cl™!(~1) consists of a sigle element
if n is odd and of two elements if n = 2m is even. In both cases we have the
involution 8p(g) = (g")~!, which corresponds to the split real form oy(g) = . The
tixed points subgroups are

G% =S0,(C) and G°° =SL,(R).

with 0, 4(g9) = Ip,q9lp g, for

When n = 2m is even, we also have the involution 81(g) = Jm00(g)]51, where J.,
is the symplectic matrix
[ 0 In
Jm = (—Im 0 ) '

so the real form associated to it is 01(g) = J;m§J - The fixed points subgroups are
G% =Sp, (C) and G°' =SU'(2m).

We refer to Table 26.3 in | ] for a complete classification of the involutions
of the simple groups.
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1.3 SPLIT TORI AND RESTRICTED ROOTS

Split tori

Let G be a reductive algebraic group over C and 0 € Auty(G) an involution. We
say that a torus A C G is 0-split if 0(a) = a™! for every a € A, and we say that it is
maximal ©-split if it is maximal among 0-split tori.

Remark 1.3.1. The name "0-split" comes from the correspondence with real forms.
More precisely, a real algebraic torus is by definition a real form of a complex alge-
braic torus, thatis, alinear algebraic group Tr over R such that its complexification
Tc is isomorphic to (C*)" for some v € Z,. We say that the real algebraic torus
Tr is R-split if Tr is R-isomorphic to (R*)". An example of a real algebraic torus
which is not R-splitis U(1)". Now, if we take o the Cartan real form associated to
0, then a 0-split torus A is just the complexification of an R-split torus Ar € G°°.

A linear algebraic group Gr over R is R-split if there exists a maximal R-
split torus TR C GRr such that its complexification T¢ is a maximal torus of the
complexification G¢. A real form of a complex group G is split if the group Gr is
split. Equivalently, the real form is split if there exists a 0-split torus which is a
maximal torus of G, for 0 the Cartan involution associated to the real form.

More generally, we say that the real group Gr is R-quasisplit if it has an R-split
Borel subgroup Br C Gr.

We now state some of the results of Vust [ ] on O-split tori.
Proposition 1.3.2 (Vust).
1. Non-trivial ©-split tori exist.

2. Any maximal torus T of G containing a maximal ©-split torus is 0-stable, meaning
that 6(T) C T.

3. All maximal O-split tori are pairwise conjugate by elements of G®.

4. For any maximal ©-split torus A C G, the group G° decomposes uniquely as
G® = FOG{, for
Fe:AﬂGez{aEA:azzl}.

5. For any maximal ©-split torus A C G, the centralizer Zg(A) decomposes uniquely
as

ZG(A) = (Zc(A) N GY)A.

Related to point (4) in the proposition above, we also have the following result
of Richardson [ , Lemma 8.1.(a)].

Lemma 1.3.3. For any maximal 0-split torus A C G, the group Gg decomposes uniquely
as Gg = FeGe,for
Fo=ANGe={acA:a’€Zg}.
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Split parabolics

A parabolic subgroup P C G is 8-split if P and 6(P) are opposite, that is, if P N 6(P)
is a Levi subgroup of both P and 6(P). If P c G is a minimal 6-split parabolic
subgroup one can show [ ] that there exists a maximal 0-split torus A and a
dominant cocharacter A € X.(A) such that P is of the form

P=PQA) = {p €G: chin})tkpt_)‘ € G}.

Equivalently, if one takes T > A a maximal torus, and considers @, the root system
andg=te P xe®, g the corresponding root space decomposition, then P(A) is
the parabolic subgroup with Lie algebra

pA) =t @ g%.

(a,A\)=0

This P(A) admits the Levi decomposition

(=te (P ¢*=Lie(ZcM) and M= P o,

(e, A)=0 (e, A)>0

for Zgc(A\) = Z(;({Z}\ 1z € C*}) the centralizer of the uniparametric subgroup in-
duced by A. As a consequence, the Levi subgroup P N 6(P) is equal to

PNO(P)=2Zg(A) = Zg(A).

Remark 1.3.4. Following on the correspondence with real groups, from the above
it follows that if we consider og the Cartan real form associated to 0, then P C G is
a 0-split parabolic subgroup if and only if it is the complexification of a parabolic
subgroup Pr C G°° containing as a maximal torus the R-split torus Ar of which
A is its complexification. In other words, P is 0-split if and only if the real form
P?¢ is R-split. This motivates the following.

Definition 1.3.5. An involution 0 € Aut,(G) is quasisplit if there exists a 0-split
Borel subgroup B € G. Equivalently, 6 is quasisplit if there exists a maximal
0-split torus A such that T = Zg(A) is a maximal torus of G.

Remark 1.3.6. Of course, 0 is quasisplit if and only if the real group G°° is R-
quasisplit.

Proposition 1.3.7. Any class a € Outy(G) can be represented by a quasisplit involution.

Proof. Let 6y € Auty(G) be any involution representing a. Let B C G be a Borel
subgroup and B~ an opposite Borel subgroup of B. That is, B~ is such that
T =B NB™ is a maximal torus. Let A, be the simple roots corresponding to B and
T and consider a pinning of G of the form (B~, T, {e_(x RS Ag}). We can also
consider the different pinning (6(B), 00(T), { €0 : O € Ag}). These two pinnings
are related by an inner automorphism; that is, there exists some s € G such that

B~ =s0p(B)s™!, T=s0p(T)s™!, and {e_o} = Adg{eyo,}.
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Therefore, if we put 6 = Ints 00y, we have
B =0(B), T=0(T), and {e_} ={eyo}-

Moreover, 0 is an involution since 62 is an inner automorphism of G with B~ =
02(B7), T=0%(T) and {e_} = {e_(xez }, so it must be trivial. O

A consequence of the existence of minimal 0-split parabolics is the Iwasawa
decomposition.

Proposition 1.3.8 (Iwasawa decomposition). Let P C G be a minimal 0-split parabolic
subgroup and PY its unipotent radical. Then the product Gg APY is an open subset of G.

Proof. We begin by showing that Gg P is open in G. It suffices to show that
9% + p = g. Now, since P and O(P) are opposite, for any a € g we can write

a=b+06(c),
for b, ¢ € p. But then we can also write
a=(c+0(c)+Mb-c)eg®+p

Finally, the Levi decomposition of P yields P = Zg(A)P", from where it follows
that
GIP = GJZg(A)P* = GIAP™,

since Zg(A) = (G® N Zg(A))A. O

The restricted root system

Let A C G be a maximal 0-split torus and T C G a maximal O-stable torus
containing it. Let r denote the rank of T and 1 the rank of A. The number 1 is
called the rank of the symmetric variety G/G®. Let us consider @ the root system
of g.

The involution 0 naturally induces an involution x — x° on the characters
X*(T). For each x € X*(T) we define ¥ = (x — x®)/2, which is a well defined
element of £1. Now, the lattice formed by the elements ¥ of this form is naturally
identified with the group of characters X*(A).

It is easy to check that the involution on characters of T sends roots to roots.
The elements of the set % of roots fixed under this involution are called the
imaginary roots. A choice of positive roots ®; C @, can be made in such a way
that if « € @ is not an imaginary root, then «® is a negative root. Making this
choice amounts to choosing a Borel subgroup B C G contained in a minimal
0-split parabolic subgroup. Indeed, this is the Borel subgroup B with Lie algebra

b=t @g“.

+
€Dy

Proposition 1.3.9. If 6 is quasisplit, then ®Y = @.
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Proof. If © is quasisplit, we can choose B to be 0-split and, since B is minimal
among parabolics, it must be of the form P(A) for some A € X.(A). Now, the Levi
factor of B is the maximal torus T, so

and we conclude that
{xe @4:(x,A) =0} = 0.

Finally, if & is an imaginary root, since (%, Ay = —(a, A), we have («,A) =0. O

Consider now the vector space g = X*(A) ®z R, which is naturally a subspace
of £t and thus inherits the scalar product (-, -).

Definition 1.3.10. The set of restricted roots of 0 is

(X—OCe

2

@ez{a: eee:cxecpg\cpg}.

The following is well known (see, for example [ D.

Proposition 1.3.11. The set Qg is a (possibly non-reduced) root system in Eg with Weyl
group the little Weyl group Wy = Ng(A)/Zg(A) =N Gg(A) / ZGg(A).

Simple roots for ®g can be constructed from the simple roots A, of @. Indeed,
these roots can be split into two groups

Ag N (Dg\ @) = {1, ..., 0m}, AgN DY ={B1,...,Br-m}-

Now, one can order (see [ ] for more details) the simple roots {1, ..., Xm}
in such a way that the &; are mutually distinct for alli < land for each j > 1 there
exists some i < 1 with &; = &;. Thus, we obtain the set of restricted simple roots

Ag 2{5(1,...,5(1}.

There is a natural inclusion of the root lattice Rg := R(Dg) = Z(Dg) in the
group of characters X*(A), and the cokernel of this inclusion is the group of
characters of the subgroup

{aeA:&(a)=1forall x € Og}.

This group can be easily shown to be equal to Fg = AN Gg, and thus, if we denote
Ag, = A/Fg, we get
Ro = X' (Agy)-

Dually, we get Py = P¥(@g) = Xi(Ag,).
We describe now the weight lattice P9 = P(Dg) of ®g. Let us denote by
@®1,...,®1 the corresponding fundamental dominant weights (that is, we want
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these weights to satisfy (&, @;) = &ij for i = 1,...,1). When G is semisim-
ple simply-connected, these @; can be determined in terms of the fundamental
dominant weights of ®,. We can partition these into two sets

{wll"°lwm}l {C11°°'/Zﬂ‘—m}

with (ocz/, wj) = dij, <[3iv, ;) = dy5 and all the (ociv, G) = (B;’,w]) =0.

Since a root & and its image «® must have the same length, we can have three
posible cases: (1) «® = —«, (2) («, a®) = 0, and (3) (", «®) = 1. Note that if
there is a root o of type (3) then s o() = o — «® must be a root in @, and this
root restricts to itself, which is equal to 2&. This implies that @¢ is nonreduced
and that we can take the restricted simple roots Ag coming just from simple roots
of types (1) and (2).

Now, for any x € X*(T) we have

(Y, x) in case (1)
(&', x =x% =1(a’,x-x®  incase(2)
2(x¥,x —x®) incase (3).

Asin| ], itis easy to see that there exists some permutation o € Sy, of order
2 such that for each i =1, ..., 1, we have that ocie + Ag(i) = ocg(i) + «j is a positive
imaginary root. Moreover, we have w? = —Wg(i). Then it is straightforward from
the above that we get

2w; if «; is of type (1)

@i = (Wi + W) if o is of type (2) and 1 # o(i)

wi if «; is of type (2) and i = of(i).

Note that if CDg6 = @, then i = o(i) if and only if cx? = —x4, and thus we do not

have the third situation in the formula above.

Lemma 1.3.12. When G is semisimple simply-connected, the weight lattice Pg =
Z{®1,..., @) is equal to the group of characters X*(Ago) of the torus Ago = A/F°.
Dually, we get R§ = R¥(Pg) = X.(Ago).

Proof. The lattice X*(Age) can be identified with 2X*(A) = {x -x%:xe X*(T)}. It
is clear from the above that for every x € X*(T) and & € ®@¢, the number (&", x—x?)
is an integer. On the other hand, 2w; and w; + w 4(y) are clearly of the form x — %,
while clearly w; restricts to 1 on F® = A N G if w? = —Wj. O

To finish the section, note that
i])e/_‘_ = CP+(A9) =PgN Cze =Pg N CZ = X*(AGG) N CZ =: X*(AG9)+.

By an analogous argument, we get P | = X.(Ag,) N C = Xu(Agg)+-
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Examples

Example 1.3.13 (The diagonal case). In the diagonal case from Example 1.2.5, a
maximal ©-split torus is given by A = {(t7},t): t € T} ¢ T x T, with character
lattice X*(A) = {(—x, %) : x € X*(T)}. The restricted roots are then identified with
@g-

Example 1.3.14 (SL(C),n > 2). Recall the classification of the involutions of
SL»(C) given in Example 1.2.6. We determine now the restricted root systems
associated to each of these involutions. We begin by considering the inner involu-
tions 0y,q(g) = Ip,q9lp,q- Under a change of basis, we can write these involutions

4

as 0p,q(9) = 1}, g9}, 4, for

0o 0 I,
I;,q = ~0 Iq_p 0 ,
I, 0 O
where I, is the p X p matrix
0 1
I, =0 ol
1 ...0

Now it is clear that the elements of the form
a= diag(a1,...,ap,l,...,l,agl,...,a;l)

form a maximal 0, ¢-split torus A. This torus sits inside the standard maximal
torus T of SL,,(C), which is 0-stable. The corresponding simple roots are Ay, =
{1, ..., n-1}, with

Xi = & ~ Eitl,
for ei(diag(ay, ..., an)) = ai. The imaginary roots are those of the form ¢; — ¢j,
forp < i#j < q; thus, 0, ¢ is quasisplit if and only if ¢ = p or g = p + 1. The
restricted root system is

Do = {+8; + &5, £28, 8 : 1 <i#j <p},
when p #n/2, and
Do = {+8; £ &, 28 : 1 <i#j<p},
when p = n/2. Therefore, the restricted root system is nonreduced, of type BC,
if p # n/2, and reduced of type Cp, if p = n/2.

For the outer involution 0, the standard torus is maximal 0y-split and ®¢ =
®D,p,,. On the other hand, if n = 2m is even, we can choose a basis such that 01(g) =

Imlm(gT)_llm,m, where T denotes transposition with respect to the secondary
diagonal. It is now easy to see that the elements of the form
a = diag(ay, ap, ..., az, a1),

with aja; -+ a;,m = 1 form a maximal 6-split torus A. The restricted root system
now is
Do ={ei—-g:1<i#j<m},

so it has type An,_1. Table 1.1 summarizes this example and Example 1.2.6.
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Table 1.1: Involutions of SL,(C), for n > 2. Notation for real forms following
Helgason [ ].

Involution G® Real form Split or quasisplit? Dy

Quasisplit iff BC, ifp # q
q=porq=p+1 Cpifp=q
outer _00(9) = (g7 504 (C) SLn(R) Split Anct

— Ty-17-1
el((c?r)ﬂ; lanﬁ(g: ;m])m Spam (€) SU*(n) No A

Inner 0p,4(9) =1p,q91p,q S(GL,(C) x GL4(C)) SU(p, q)

1.4 SYMMETRIC VARIETIES AND THEIR EMBEDDINGS

Symmetric pairs and symmetric varieties

Let G be a reductive algebraic group over C.

Definition 1.4.1. Any closed subgroup H C G of G with
Gy CHC Ge

for some involution 0 € Auty(G) is called a symmetric subgroup (associated to 0).
A pair (G, H) where G is a reductive group and H C G is a symmetric subgroup
is called a symmetric pair, while the corresponding algebraic homogeneous space
G/H is called a symmetric variety.

An embedding of a symmetric variety or symmetric embedding is a normal G-
variety £ with a G-equivariant open embedding Oy — L, where Oy = G/H is a
symmetric variety.

Remark 1.4.2. Note that the Lie algebra of any symmetric subgroup associated to
an involution 0 is equal to g°.

If G is a reductive group, we can decompose itas G = G’ZOG, for G’ the derived
group and ZOG the connected centre of G, which is a torus. Now, any involution
0 € Auty(G) preserves the centre and its connected components, so 8" acts on G’
as an involution 0’ = 0|g' € Auty(G’). Moreover, there exists a torus Z such that
any symmetric variety G/H associated to 6 is isomorphis to one associated to the
involution (8’(g),z) — (g,z" ') on G’ x Z.

Thus, from now on we will assume that any symmetric variety is of the form
Gz/Hz where Gz is a reductive group Gz = G X Z, with G semisimple and Z
a torus, and that Gz/Hz is associated to the involution (g,z) — (0(g),z"!) for
0 € Auty(G). The group H = Hz N (G X {1}) is a symmetric subgroup of G
associated to 6. We denote (Gz/Hz)" = G/H and call it the semisimple part of
Gz/Hz.

Affine spherical varieties

Let X~ be a normal G-variety. We denote by C[X] its ring of regular functions
and by C(Z) its function field. For any subgroup H C G we denote by C[Z]"
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(respectively C(X)M) the corresponding ring (resp. field) of H-invariant functions;
that is, of functions f with

f(h-x) =f(x) forany h € Hand x € L.

We denote by C[Z]") (respectively C(Z)™) the corresponding ring (resp. field)
of H-semiinvariants of X; these are the functions f such that there exists a character
Xf € X*(H) with

f(h-x) = hXff(x) for any h € H.

Let B € G be a Borel subgroup. The characters that arise from the B-
semiinvariants of ~ are called the weights of £. More precisely, we define the
weight lattice and the weight semigroup of X to be, respectively

P(Z) = {x e X’(B): If e C(L)'®), x¢ = x},
PL(Z) = {x e X*(B) : If e C[Z]®), x¢ = x} .

The rank of the weight lattice P(X) is called the rank of L.
When I is affine, P(X) can be determined in terms of P.(X). Indeed, we have
the following.

Proposition 1.4.3. Suppose that L is an affine G-variety. Then every element f € C(Z)(®)
can be written as f = f1/f,, for f1,f, € C[Z]®).

Proof. Start by writing f = f /f/, for f|, f; € C[Z] not necessarily B-semiinvariant.
Consider now the subspace of C[Z] generated by the B-orbit B - f,. This space
is finite dimensional and B-stable and thus, by the Lie—Kolchin theorem, it must
contain a B-semiinvariant fo. Write f, = }}; &i(by - 7)), with &; € Cand b; € B and
denote f; = a 3}; &i(by - 1)), for

. 2 i
2 &ixe(bi)
Then for all 1 we have
b1 f —bi-f=xe(by)-f
b-L f, Xf( 'L)
and thus ;
1
— =,
1)
so f1 = ff, is also B-semiinvariant. m]

Corollary 1.4.4. If X is an affine G-variety, we have
P(X) =ZP.(X).

Definition 1.4.5. A normal G-variety X is spherical if there exists a Borel subgroup
B C G and an open B-orbit in X.

In general, there is a natural short exact sequence
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0 — €(2)° —> € — P(T) — 0.

Now, suppose that X is spherical, choose B with an open B-orbit in £, and take xg
a point in that orbit. The orbit Bx is birational to X and therefore we have

C(X)® = C(Bxy)® = C

Note that, in fact, this property is equivalent to X being a spherical variety. More-
over, if we denote by H C G the stabilizer of xo, we have Bxg = B/H and thus we
get C(Z)®) = C(Bxo)®) = C(B/H)®) and

P(X) = X*(B/(B N H)).
By restricting characters to a maximal torus T C B, we conclude the following.

Proposition 1.4.6. Let X be a spherical variety with open B-orbit Bxg = B/H, T c Ba
maximal torus and put Ts = T/(T N H). Then, there is a canonical bijection

P(E) = X'(Ty).

Let us suppose now that X is an affine G-variety. Then, the coordinate ring
C[X] is naturally a G-module, and as such it decomposes as a sum of irreducible
representations of G

C[zZ] = @ C[Z]y = @ m, Vs,
XEX(T)+ XEX(T)+

for my = my, (), and Vy the irreducible representation of highest weight x. We
write C[X], for the component isomorphic to m, V,. This allows us to identify

PA(D)={x e X(T)s:my > 1},

for T ¢ G any maximal torus. In particular, we have a natural inclusion P,(X) C
X*(T). If B O T is a Borel subgroup of G, then the multiplicities m, can be
computed as

m, = dimC[£],

where C[Z]&B) denotes the subspace of B-semiivariants with weight x. Also, if
Y = G/H is a homogeneous space, the multiplicities can also be obtained as
my = dim(V})".

Proposition 1.4.7. An affine G-variety is spherical if and only if its coordinate ring

decomposes as
czl= P v
XEP(Z)

Proof. Recall that, if X is affine, every element of C(Z)(B) can be written as a
quotient f1/fp, for f1,f; € C[Z]®). Now, f/f, € C(X)B if and only if xf, = X,
The variety I is spherical if and only if C(£)B = C*, and thus if and only if any
two 1,y € C[Z](B) with the same weight x are proportional; that is, if and only if
my < 1 for every x. O
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When I is an affine spherical variety, the weight semigroup P,(Z) can be
recovered as the lattice points on the cone generated by it.

Proposition 1.4.8. If L is an affine spherical variety, then

Proof. Recall that ZP,(X) = P(X) so for any x € ZP.(X) there exists a function
f € C(X)®) with x¢ = x. Now, X € Q,P,(Z) if and only if there exists some natural
number n € Z, such that nx € P,(X). Since f has weight x, the power f™ has
weight nx and thus f™ € C[Z]. But, since Z isnormal, f € C[X]and x € P.(X). O

The weights of a symmetric variety

Proposition 1.4.9. Symmetric varieties and their embeddings are spherical.

Proof. By definition, a symmetric embedding is a normal G-variety X with an open
embedding of a symmetric variety G/H. Thus, it suffices to prove that symmetric
varieties are spherical. Suppose that G/H is a symmetric variety associated to an
involution 0 € Aut,(G). Since Gg C H, there is a natural projection G/ Gg — G/H,
so it suffices to prove that G /G is spherical, since the projection of an open B-orbit
in G/G§ gives an open B-orbit in G/H. Now, G/G] is spherical as a consequence
of the Iwasawa decomposition. Indeed, recall that the Iwasawa decomposition
says that there is an open embedding Gg APY C G, where P" is the unipotent
radical of a minimal 6-split parabolic subgroup P € G. This induces an open
G-equivariant embedding APY — G/ Gg and, if we choose any Borel subgroup

B C P, we have AP" C B and therefore we get an open G-equivariant embedding
B — G/G]. O

A first consequence of symmetric varieties being spherical is that, if X is a
symmetric embedding with Oy = G/H a symmetric variety associated to an
involution 0 € Auty(G), then

P(Z) = X(Tn),

where Ty = T/(T N H) for any 6-stable maximal torus T ¢ G. Note thatif A ¢ G
is a maximal 6-split torus contained in T, then we also have

TH=An=A/(ANH).

In particular, we have
P(G/Gg) = X'(Ag,) = Re.

Moreover, we have
P(G/G®) = X'(Age)

which, if G is semisimple simply-connected, is equal to the weight lattice Pg.

In general, one can recover the weight semigroup of a symmetric variety G/H
as the dominant weights of the corresponding torus A. More precisely, we have
the following.
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Proposition 1.4.10. For any symmetric variety G/H, we have
Q+P+(G/H) = Cze-

Therefore,
P.(G/H) =X (An) N CZG =X'"(A) N CZ =: X' (AnH)+.

Proof. Note that P.(G/H)is clearly contained in CZ and in Eg (since X*(An) C o),
and therefore it is contained in £g N C}, = C Ze.

For the other inclusion, it suffices to show that for any x € X*(T)N CZG we have
2x € P.(G/H). We show this by proving that (V;X)H # {0}. Note that an element

x eX(T)ynC Ze is just a dominant character of T with x® = —x. We now need the
following.

Lemma 1.4.11. If x is a dominant character of T with x® = —x, then there is an
isomorphism Vg — V5, where VQ is the space Vy, endowed with the O-twisted G-action
g-ev="0(g)v.

The isomorphism VQ — V; can be understood as a 6-linear isomorphism
Vy — V5. Under this isomorphism, the highest weight vector vy € V, is mapped
into a lowest weight vector in V;. We can now describe a canonical way to pick
a O-linear isomorphism. In V, the line Cv, has a unique T-stable complement
V,, and we define vX € V, by (vX,vy) = 1, (vX,V,) = 0. This vX is a lowest
weight vector, and thus we can define w : Vj — Vj to be the unique 6-linear
isomorphism with w(vX) = v,.

Complete now v, to a basis {vx, Vi,V2,..., vm} of weight vectors and consider
the dual basis {vX,vl,vz, .. .,vm}. We have w(vX) = v, and if x; is the weight of
vi, the weight of vtis —xi, so —X? is the weight of w; = w(v'). Now, under the
isomorphism Hom(V;}, Vy) = V, ® V,, the homomorphism w is identified with

m
W =Vy ®Vy +Zwi ® vy,
i=1
where v, ® v, has weight 2x and w; ® v; has weight x; — Xie-
Since w is O-linear, it is an H-equivariant isomorphism, and thus it is naturally
an element of (V) ® Vy)". Taking the image under the canonical G-equivariant

projection V, ® V, — V>,, we obtain a non-zero element @ € V;( . By the dual
process, we obtain a non-zero element in (V;X)H. O

We give now the proof of the Lemma.

Proof of Lemma 1.4.11. The G-module V;, can be characterized as the irreducible
representation of G with lowest weight —x. Now if v, € V, is a vector of weight
x and we consider P C G the parabolic subgroup of G fixing the line through v,,
then P is generated by a Borel subgroup B and the root subgroups relative to the
negative roots —« for which («, x) = 0. Therefore 8(P) contains the root subgroups
relative to the simple imaginary roots and their negatives, and also to the roots
o9, for o € O\ d)g. Now, since @ maps positive roots in @ \ (Dg9 to negative
roots, 8(P) contains a Borel subgroup opposite to B. Clearly v, € VS is stabilized
by 6(P) and therefore it is a minimal weight vector of weight —A. O
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The dual group

Sakellaridis and Venkatesh [ ] describe a canonical way of associating a dual
group G z toany spherical G-variety X, conjecturally with a natural homomorphism
Gr — G to the Langlands dual group G of G. Knop and Schalke [ ] later
proved that, indeed, Gy is contained in G up to isogeny. Their construction
consists on taking the weight lattice P(X) on X and a natural set of simple roots
Ay associated to Z, in such a way that (P(Z), Az, P(2)", A)) is a based root datum.

The dual group Gy is defined as the reductive group over C with based root
datum equal to (P(Z)", Ay, P(X), Ax). The simple roots Ay are obtained by taking
the generators of intersections of the weight lattice with the negative of the dual
of the central valuation cone, and then applying some process of normalization,
consisting in further intersecting the real span of each generator with the root
lattice of G, as explained in [ , ].

If 0 € Auty(G)isaninvolution, thereis a natural reduced root system associated
to 0, namely

O = {oxe Pg: /2 ¢ Do},

the reduced version of the restricted root system obtained by taking the shortest
roots. If A is the corresponding maximal 0-split torus, the resulting based root
datum is (X*(A), A4 X,(A), (Areed)v). The group Gg corresponding to this based
root datum is the complexification of a maximal R-split subalgebra 3r C gr inside
the Lie algebra gr of the real form of G corresponding to 0. See [ , Section
2.2] for more details.

In most cases Ag/ge = Ay red but in some cases there are normalization factors
involved, that change some roots by multiples of them by factors of 1/2 or 2. In
specific cases, we can find that Areed is of type By, or Cyyy, whereas Ag o is of type
Cm or By, respectively. In Table 1.2, we recollect the different involutions of the
simple Lie algebras with their fixed points, their associated real forms and root
systems, and the Lie algebra of the corresponding dual groups. The reader can
compare Table 1.2 with Table 1 in [ ] and with Table 1 in [ ]. For
us, the most relevant properties of the dual group Gg /e are the following:

1. GG/Ge contains A ge = Spec(C[e*(*c?)]) as a maximal torus,
2. the Weyl group of Gg /o is the little Weyl group W,
3. the dominant Weyl chamber of G Jge coincides with X.(Age)-.

The dual group Gg /e of the symmetric variety G/G® was previously discov-

ered by Nadler [ ] as a group G g, naturally associated to the corresponding
real form Gg, obtained as the Tannaka group of a certain neutral Tannakian
category of perverse sheaves in the real loop Grassmannian of Gg, thus giving a
generalization of the geometric Satake correspondence. More generaly, by a simi-
lar procedure, Gaitsgory and Nadler [ ] associated a reductive group Gy GN
to any spherical G-variety X, with a natural inclusion Grcn C G. The equality
of Gy N and Gy remains conjectural in the general case of a spherical variety
[ , Page 75].
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Table 1.2: Simple groups with their involutions, real forms and associated dual

groups. Notation for types and real forms following Helgason [ ]
Type q g aR g° Ag AR Agjge Bgjgo Notes
Al sl sl sl (R) S0p An-q Anq An-1 sl split
AIl sl sl s0*(2n) SPon Anq Anq Anq sl
Al sl sl so(p,q)  s(al, ®aly)  BC, B, B, SPap pQJ;?f:q T:;’ flq
AV shn slhn su(n, n) s(al,, @ aly) Ch Cn Bn $Pon A;EE:IZ};I ;th
Bl  soont1 sPpn s0(p,q+1)  sop @ sog p By Bp shyp PHq=2n,p<(g
BII  soon1 SPon S0(M,mn+1) s0n & 50541 Bn Bn Bn SPon split
CI SPrpy S0on41 spon (R) al,, Ch Ch Cn SDon+1 split
CII SPon S0+l SP(2P,2Q)  SPyp @ Shaqg BC, By B, spyp Ptq=m,p<q
Py S04n+1 PN, 2N)  SPyn D SPon Ch Cn Bn SPon Aged #Aggo
DI S0on $0on so(n,n) 505 D $0p Dn Dn Dn $0on split
p+q=2n,p<(
DII $0ony . s0(p, q) s0p ® 50 By Bp Cp soppe1 QS idf q=p+2
AF # Agyge
Do o S0on s0*(21n) ol BCn-1)2 Bm-1)2 Bm-1)/2 $Pn-1 n odd
s s s0'(2n) aln Cnz  Capz Bup  shn A{;‘?;VAQZ/@
EI e (33 €6(6) sPg E¢ Eq E¢ g split
EIl e (33 26(2) slg @ slp Fy Fy Fy ia quasisplit
EIII e ¢ C6(-14) s ®C BC, B, Cy sD5 Aged #Ag/go
EIV e e6 €6(—26) fa A A A sl
EV ¢y ey e7(7) slg E; E, E; ¢y split
EVI ey ey €7(-5) s0g @ slp Fy Fy Fy fa
EVII ¢ ¢z ¢7(-25) ¢ ®C Cs Cs Bs 5Pg AR £ Ag o
EVIII eg eg eg(8) SD1g Eg Eg Eg eg split
EIX e e es(_24) ¢ @ sl F, F Fu 4
FI T4 fa Taa) spg @ sl Fy Fy F4 fa split
FII fa fa fa(-20) 09 BCy Aq Ay sly
G 1)) ) 020) sh @ sl G Gy Gy 0] split

1.5 THE WONDERFUL COMPACTIFICATION

Wonderful varieties

As in the previous section, we let G be a reductive algebraic group over C.

Definition 1.5.1. Let G/H be a spherical homogeneous space and L a G-variety
with a G-equivariant open and dense embedding G/H — Z. We say that X is

wonderful if

1. Zis smooth and projective.
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2. £\ (G/H) is a divisor with normal crossings, i.e., its components Dy, ..., Dy
are smooth and intersect transversally.

3. The closures of the G-orbits of X are given by the intersections Di, N Di, N
-++NDj, forl1 <y <ip <--- < <L

It follows from the theory of spherical varieties that, given a spherical ho-
mogeneous space G/H, a wonderful G-variety X with a G-equivariant open and
dense embedding G/H < %, if it exists, is unique. In the case that it exists, we
call it the wonderful compactification of G/H. Moreover, one can obtain necessary
and sufficient conditions for the existence of such a wonderful compactification.
For the purpose of this document, we will just restrict ourselves to explain the
proof given by De Concini and Procesi [ ] of the existence of the wonderful
compactification of the symmetric variety G/Gg, for 6 € Auty(G). We refer the
reader to [ , Section 30] for a more general treatment of wonderful varieties.

The De Concini—Procesi embedding

Let 6 € Auty(G) be an involution and choose A € G a maximal 0-split torus and
T C G a maximal torus containing A. We also fix B C G a Borel subgroup of G
contained in a minimal 0-split parabolic and containing T, and denote by B~ the
opposite Borel subgroup of B; thatis BN B~ =T.

Let x € X*(T) be a character of T lying in the interior of the dominant Weyl
chamber and such that x® = —x. Recall from the proof of Proposition 1.4.10 that
there exists a canonical 0-linear element w € V, ® V,, and that it projects to a
non-zero element @ € V,,. Consider now the projective space P>, = IP(V,y) and
the corresponding point [@W] € Py,. The action of G on V;, extends to an action
on ]sz.

Lemma 1.5.2. The stabilizer of [(] € P2y under the action of G is equal to Ge.
Proof. First, note that since w is 0-linear we have
g-w=guwg™' =g0(g)" w.

Now, g stabilizes [@] if and only if g - w = aw, for a € C and thus if and only if
g0(g)~! acts as a scalar on Vy.. But, since V, is irreducible, g6(g)~! acts on it as a
scalar if and only if it belongs to the centre Zg. O

Therefore, the G-orbit G - [®] is canonically isomorphic to the symmetric

variety G/Gg. We denoteby G/Gg = G - [0] C P, the closure of the orbit G - [®]
inside the projective space P»,, which is endowed with a natural embedding

G/Go — G- [@] — G/Gp.

Moreover, note that since G/Gg is closed in P>, and G-stable, it contains the
unique closed orbit of G acting on P>y, namely the orbit of the highest weight

vector vo. We denote this orbit by = ¢ G/Gg. A G-variety with a unique closed
G-orbit is said to be simple.
Our purpose in this section is to give a sketch of the proof of the following

[ 1.
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Theorem 1.5.3 (De Concini-Procesi). The projective variety G/Gg is the wonderful
compactification of G/Ge.

The toric variety

In V3, the line Cvyy has a unique T-stable complement Vay and we can consider
the open affine subset vo, @ V2, C P2y Recall from the proof of 1.4.10 that we can
decompose

m
w :Vx®"x+zwi R Vi,
i=1

and that the w; ® v; had weights of the form x; — ¥

1
decompose @ in the form
W =vyy + Z Zi.

Lemma 1.5.4. The z; above can be taken to have weights 2(x — &4).

. This implies that we can

Proof. Since @ is 6-linear, for any x € 9% we have eX@ = 0. In particular, if & € Ag
is the restriction of a simple root «, then for any x_« € g_« we have

o _
et = 0.

But

Xoqt+X

0 _ oXea

and e*-*vy, is a non-zero weight vector of weight 2x — .. Therefore, we can take
z; to satisfy exgoczi = —e*-«vp, and thus z; has weight 2(x — &). O

Lemma 1.5.5. The closure in vay & Vay, of the A-orbit A - [@] is isomorphic to the A-toric

variety
A = Spec (@ C[e‘zé‘]) :

xeAp

In other words, A is identified with the l-dimensional affine space A' with
the embedding A — A! given explicitly as a — (a™2%,...,a %) so that A is
identified with the open set in A' where all coordinates are non-zero.

Proof. Indeed we just have to apply an element a € A to . We obtain

m
ad = a2XV2X Z aZ(X_oﬁ)Zi-
i=1

In IP;, this defines the point with homogeneous coordinates

(1: a %, g2 a‘za‘),

as we wanted to show. O
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The local structure theorem

Consider the open subset U C G/Gg defined as the intersection
U=G/GgnN (VZX S \_/ZX)

inside of IP>y.. Note that U is B™-stable and that it contains [®] and A. Therefore,
w2 € U and thus U intersects the unique closed orbit =. The following easy

lemma allows us to obtain a lot of information about G/Gg from the study of =.

Lemma 1.5.6. If ¥ is a G-variety with a unique closed G-orbit = and U C X is an open
subset with=Z NU # @, then
L= U g-u.

geaG

The local structure theorem gives a nice description of the open subset U. Let P*
be the unipotent radical of B~, which is the unipotent group with Lie algebra

M= P o

- 0
xe®@ N\ Dy

Since U is B™-stable, the unipotent group P* acts on U and there is a well defined
map

PYx A — U

(u,x) — u-x.

Theorem 1.5.7 (Local structure theorem). The above map P* x A — U is an isomor-
phism.

Remark 1.5.8. When restricting to G/Gg, the local structure theorem simply yields
the Iwasawa decomposition P* X A — G/Gg.

In order to make our exposition shorter, we omit the proof of the local structure
theorem and refer the reader to [ , Sections 2.3-2.7].

The boundary

The last ingredient for the proof of the theorem of De Concini-Procesi is the
description of the boundary divisor G/Gg \ (G/Gg). A first result s the following.

Proposition 1.5.9. The intersection between G - [0] and P* X A is the open set where
the last 1 coordinates are non-zero.

Again, to simplify the exposition, we omit the proof of this proposition and
refer the reader to [ , Section 2.8].

Let us denote by H; C P* X A the hyperplane formed by the points such that
the i-th coordinate in A vanishes. From the description of the action of A in A
it follows that two points in U lie in the same P“ X A-orbit if and only if they are
contained in exactly the same set of hyperplanes H;.
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Suppose now that D is an irreducible component of the boundary divisor

G/Gp \ (G/Gpg). Since G is assumed to be connected, necessarily D is G-stable.
Therefore, the unique closed orbit = is contained in D and thus D N U is a compo-
nent of U\ G-[@]. Therefore, there exists some1i € {1,...,1l} suchthat DNU = Hj.
This implies that D = H;, so we denote it by D; = H;.

Summing up, the components of the boundary divisor are of the form D; = Hj,
fori=1,...,1, and thus are smooth and intersect transversally. It is clear now
that the orbits are of the form

Dy n---NDy \ [ ] Syn-nsyns;

i#ily,.. ik

and their closures are just D, N --- N D;,. Moreover, it is also clear now that the
unique closed orbit is
= ﬂ D;.

1
i=1

[

We conclude then that G/Gg is indeed the wonderful compactification of G/Gg.

1.6 VERY FLAT SYMMETRIC EMBEDDINGS

Abelianization

Let X~ be a simple affine symmetric embedding. Recall from our previous discus-
sions that the corresponding symmetric variety Oy can be written in the form
Ox = Gz/Hgz, for Gz a reductive group Gz = G X Z, with G semisimple and
Z a torus and Gz/Hz associated to the involution 9 : (g,z) — (8(g),z 1) for
0 € Auty(G).

Consider the natural projections pr; : Gz — G and pr, : Gz — Z. We can
now define the tori

A): = O):/G = Z/prZ(HZ),

and
Zs = Z/(pr,(Hz) N Zy), for Z; = {z €Z:2%= 1} .

Naturally, we have a projection Zy — Ay and an inclusion X*(Ax) — X*(Zx).

Let A C G be a maximal 6-split torus and T C G a maximal torus containing
it. Then, Az = A X Z is a maximal 9-split torus of Gz and Tz a maximal 9-stable
torus containing it. Recall that we have another torus associated to

Tr =Tz/(TzNHz)=Az/(AzNHz)

such that P(X) = X*(Tz). We denoted H = Hz N (G X {1}). Let us put now
H = pr;(Hz). Then, )
T,NHz C (T N H) X prz(Hz),

so we have natural projections

pr;: T > A/(AN H) =: Ay and pr,: Ts = Z/pr,(Hz) = As.
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and inclusions i; : X*(Ap) — X*(Tg) and ip : X*(Ag) — X*(Tz). Moreover, the
kernel of the projection pr, : Tx — Ags is the torus

Ts N(Gx{1}) =T/(TAH) = A/(ANH) = Ay

Therefore, we obtain a natural projection p : X*(Tz) — X*(An). Note that since *
is affine we also have a natural inclusion P.(X) C P.(Ox) = X*(Tx)+.

Definition 1.6.1. The GIT quotient Ay := ¥ / G is an Ax-toric variety, which we
call the abelianization of L. The natural projection «y : ¥ — Ay is called the
abelianization map of L.

Remark 1.6.2. The abelianization Ay is simply the toric variety

As = Spec GB CleX] |,

X€P+(Ax)
where P, (Ay) is the intersection
Pi(Asx) = P+(2) N 12(X'(Ax)).

Definition 1.6.3. A very flat symmetric embedding is a simple affine symmetric
embedding X such that the abelianization map s : £ — Ay is dominant, flat
and with integral fibres.

Guay'’s classification

We assume for the rest of the section that G is simply-connected and fix 6 €
Auty(G). As in the previous section, we fix a maximal 6-split torus A C G.
We are interested in classifying very flat symmetric embeddings ¥ such that the
semisimple part of Oy is equal to G/G®. These have been determined by Guay
[ , Proposition 7].

Theorem 1.6.4 (Guay). A simple affine symmetric embedding ¥ with O = G/G® is
very flat if and only if there exists a homomorphism

P : X (Age) — X'(Zs),
such that, for any (a,z) € Hz N Az € (HN A) x pry(Hz) and for any x € X*(Ago), we
have
aX = 27X,
and such that the weight semigroup P (X) is of the form
P(Z) = {0 V) +1) : x € X'(Age)s,n € Po(Ax)}.

Remark 1.6.5. When I is very flat any function f € C[G/G®] with weight x can be
extended to a function f, € C[Z] with weight (x, {(x)). Indeed, just define

f1(g,2) = z2¥X1(g).



80 CHAPTER 1. THE THEORY OF SYMMETRIC VARIETIES

It is clear that f, has the desired weight. Now, since H is a symmetric subgroup
for 6, we have that any element h € H is of the form h = ahg for h € GY and
a € ANH. Thus, if (h, s) € Hz, we have, for any (g,z) € Gz,

fi(hg,zs) = sw(X)zw(X)f(hg) = S¢(X)axf+(9,2) =f.(9g,2).

This allows us to describe ~ more explicitly. For each fundamental dominant
weight @; € X*(Ago), consider the G-submodule C[G/G°]; of C[G/G®] formed
by functions with weight @, and take f%, eer, f?“ abasis of C[G/G®]; asa C-vector
space. On the other hand, let vy, ...,V be generators of P, (Ays) C X*(Z). We can
now define the map

1
(f+, (X+) . OZ — (@ Aml) @AS

i=1
(g,z)Hz +— ((f}ﬁ(g, z),...,124(9,2), (2",...,27%)).

The symmetric embedding X is then identified with the closure of the image of
this map, ~ = (f4, x;)(Ox).

In order to prove Guay’s classification theorem, one needs to consider the
following preorder on P, (X)

X1 = X21if X1 — X2 € —P+(Ax).
Let M(Z) denote the set of minimal elements under this preorder, that is
ME)={x eP+(D): X' <x = x <X}

The result follows from a series of lemmas, of which we omit the proofs and refer
to [ , Lemmas 6 and 7].

Lemma 1.6.6. The following statements are equivalent:
1. oy : X — Ay isflat.
2. C[Z] = C[Os]m(5) ® C[Ax], for M/(X) a set of representatives of the quotient

M(2)/(P+(Ax) N (=P(Ax))).

Remark 1.6.7. Note that since the embedding Oy — I is dominant, the image of
the restriction of p : X*(Tx) — X*(Agoe) to M/(X) is X*(Age)+-

Lemma 1.6.8. The fibres of s : L — As are integral if and only if M(X) is a subsemi-
group of P1(Ax).

Proof of Theorem 1.6.4. We show that if X is very flat then we have the desired
consequences, the converse being immediate from the previous lemmas. Indeed
if X is very flat, from the projections M(X) — M/(X)and p : M/(X) — X*(Age) we
can construct a surjective group homomorphism

M(Z) — M(Z) — X*(Age).
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Since it is an epimorphism, this map has a right inverse, which is of the form

X (Age) — M(X) - M(X)
X > (6 W (X)),
where 1 is a group homomorphism ¥ : X*(Age) — X'(Zg) such that if x €

X*(Age)+ then (x, W(x)) € M/(Z). Now, since M(Z) — M(Z) lies inside of the torus
Tz =Az/(Hz N Agz), for any (a,z) € Hz N Az we must have

aXz%X = 1.

In conclusion, we get

M'(Z) = {(x, b(x)) : X € X(Age)+}.

Now,
C[Os lixw(x) = C[G/G%lx ® C[e¥™)].

From this and the isomorphism C[Z] = C[Ox |am/(5)®C[Ax], theresult follows. O

Amongst all simple affine symmetric embeddings, those having a fixed point
will be of particular interest. By a fixed point of an  of a symmetric variety G/H
we mean a point 0 € X such that g-0 = 0 for any g € G. Since by assumption
Y is simple, the set {0} C X is its unique closed orbit and thus a fixed point,
if it exists, is unique. From Guay’s classification we can obtain necessary and
sufficient conditions for the existence of a fixed point.

Proposition 1.6.9. A very flat symmetric embedding ¥ with O = G/G® has a fixed
point if and only if P,(Ax) is pointed (meaning that if x and —x are in P.(Ax), then
X = 0) and the only element in P,(X) of the form (x, P(x)) for x € X*(Age)+ is (0,0).

Proof. A fixed point X corresponds to a maximal ideal I ¢ C[Z] which is fixed
under the action of Gz. If such an ideal exists, it must be of the form
= @ ClOz I wx)+n)s
(W (x)+n)ePL(Z)\{(0,0)}

and this is only an ideal if for every (x, W(x) + 1) € P+(X) \ {(0,0)}, (0,0) is not a
highest weight of C[Ox (1 (x)+n)- That is the case and (0, 0) is a highest weight of
C[Ox J(xw(x)+n) if and only if both n and —m are contained in P, (Ax). O
The enveloping embedding

By the universal property of categorical quotients, a morphism ¥; — X, of simple
affine symmetric embeddings induces a commutative square

i —

Lo

Ay — As.
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Definition 1.6.10. A morphism ¥; — X, of simple affine symmetric embeddings
is excellent if the induced square is Cartesian.

We denote by VF(G/G?) the category with very flat symmetric embeddings
with semisimple part G/G® as objects and excellent morphisms as arrows. We
can also consider the subcategory VFo(G/GP®) formed by very flat symmetric
embeddings with a fixed point.

Suppose that 6 does not have imaginary roots (that is ®9 = @, for T € G a
0-stable maximal torus). For example, we can assume that 0 is quasisplit. In that
case, a versal object of VF(G/G®) was constructed by Guay [ ]. We recall
here his construction.

We begin by taking A € T C G a maximal 6-split torus of G and putting
Ga =G XAand

Ha = {(nh, ClTl_l) he Ge,a c Fe,n c Fe} )

where we recall that we denoted F® = G® N A and Fg = Gg N A. The space
(G/G®), := GaA/Ha isasymmetric variety associated to the involution 9 : (g, a) —
(0(g), a™!) with semisimple part isomorphic to G/G°. Indeed, we have

H=HaN(Gx{1})=G? and H= pr;(Ha) = Ge.
A maximal 9-split torus of G4 is given by A X A.

Definition 1.6.11. We define the (Guay) enveloping embedding of G/G® as the sym-
metric embedding Env(G/G®) with Ognv(g/co) = (G/G 9), and determined by the
weight semigroup

P, (Env(G/G?)) = {(x, wox +7) : X € X'(Age)+,n € =Z.(Ag)} U {(0,0)},
for Ag = {&1,..., &} the simple restricted roots associated to 6.

Note that Zgny(g/gey = A/F® = Age and Agny(g o) = A/Fe = Ag,. Now, we
can define

Y X (Age) — X'(Ago)

X > wopX.

An element of Ha N (A X A) is of the form (nay, apn™!) for as, ap € F® and n € Fo.
Therefore,
(nap) WoX = n™WoX = (n7H™WoX = (gyn X,

We conclude that Env(G/G?) is a very flat symmetric embedding. Moreover,
one checks easily that it has a fixed point 0 € Env(G/G®). Its complement
Env’(G/G®) = Env(G/G®) \ {0} is a smooth dense subvariety and it follows from
[ , Theorem 4] that the GIT quotient Env’(G/G®) / Ago can be shown to be

isomorphic to the wonderful compactification G/Ge.
The main result of Guay’s paper is the following [ , Theorem 3].
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Theorem 1.6.12 (Guay). When @ = @, the envelopping embedding Env(G/G®) is a
versal object of the category VF(G/G®) and a universal object of VFo(G/G®). That is, for
any very flat symmetric embedding & with semisimple part G/ G® there exists an excellent
morphism £ — Env(G/G?), which is unique if £ has a fixed point.

Proof. If ¥ is a very flat symmetric embedding, then there exists a homomorphism
P : X*(Age) = X*(Zx) as in the statement of Theorem 1.6.4. This homomorphism
can be extended to a homomorphism 1 : X (Tenv(g/ce)) — X'(Tx). Indeed,
the inclusion G‘()A C Ha induces a surjection from (A X A)/((A X A) N G‘E\) =
Age X Age onto (AXA)/((AXA)NHA) = Tgny(g/ce), and thus a homomorphism
X (Tenv(G/Go)) = X' (Age) & X*(Age). The map 1 is then defined as

(id,\powy) (i1,12

X*(Tenv(G /o)) — X' (Age) ® X*(Age) —— X'(Age) ® X'(Zx) X (Tx).

We claim that (P4 (Env(G/G®))) ¢ P4(X). This induces a homomorphism
C[Env(G/G®)] — C[£] and dually a morphism £ — Env(G/G®). To prove
our claim, it suffices to show that for any simple restricted root &; € Ag, the
character —\(wp&;) belongs to the weight semigroup P, (Ajy). This follows from
the following lemma; we refer to [ , Lemma 11] for a proof.

Lemma 1.6.13. Let @; be a fundamental dominant weight associated to Ag of the form
@i = Wi + Wg(i), where w; is a fundamental dominant weight of T and o is defined as
in Section 1.3. Then the G-module Vo, ® Vg, contains the irreducible representation

VZG)i—éci'

Since we assumed that @Y = @, the lemma above is satisfied for every simple
restricted root. Now, from the lemma it follows that both (2@, (2®1)) and
(2@ — &4, P(2w1)) belong to the weight semigroup P, (X). But

2oi — &, P(2®1)) = Q@i — &i, Y2Di — &i) +P(&4)),
soP(&i) € P4(Ax) and thus —p(wp&i) € P+(Ay). That the resulting morphism is
excellent follows easily from [ , Proposition 7]. |

Invariant theory of symmetric varieties

Let G be a reductive group and 6 € Auty(G) an involution. The action of G on
G/G® by left multiplication restricts to an action of G®. This action was widely
studied by Richardson, and we state here his main result [ , Corollary 11.5].

Theorem 1.6.14 (Richardson). Let A C G be a maximal 0-split torus and Wy the
little Weyl group. The restriction homomorphism C[G/G®] — C[Age] induces an
isomorphism

C[G/G®]¢° = C[Age]We

We denote
cg/ge =(G/G?) J G = Age/W.
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Richardson’s result can be extended easily to a very flat symmetric embedding.
Indeed, suppose that G is semisimple simply-connected and let ~ be a very flat
symmetric embedding with 0% = G/G®. The left action of G® extends to an
action on X. Let us denote ¢y = £ J G°.

Proposition 1.6.15. If X is very flat, there is an isomorphism
Cy = CG/GG X Ay.

Proof. Since every element of P,(X) is of the form (x, W(x) + 1) for x € X*(Age)+
andn € P.(Ayx), we have

0 0 0
Cz1 = P COs]S e = CIG/GO1° ® C[As],
(x b (x)+n)ePL(X)
that is, C[CZ] = C[CG/GG] ®C[AZ] O
It follows from the discussion in [ , Sections 13 and 14] that when G is

semisimple simply-connected, the ring C[Ago]"° is a polynomial algebra and
thus Ago/Wj is an affine space. Moreover, since C[Ago] = C[eX*c0)] and the
lattice X*(Age) is generated by the fundamental weights @1,..., @1, we get an
isomorphism

C[CG/GG] = C[bl, A ,bl],

where each b; is a function in C[G/G®] with weight @;. In general, for G semisim-
ple not simply-connected, Richardson [ , Section 15] characterizes for which
involutions the ring C[Ago]|"? is a polynomial algebra

1.7 FORMAL LOOP PARAMETRIZATION

Formal arc and loop spaces

Let O = C[[z]] denote the ring of formal power series in a formal variable z and
F = gf(O0) = C((z)) its quotient field, the field of formal Laurent series in z. Given
any C-scheme X, a formal loop on X is a morphism of C-schemes Spec F — X, while
a formal arc on X is a morphism of C-schemes SpecO — ~. We denote by Z(F)
and X(0O) the sets of formal loops and formal arcs on Z, respectively. Both these
sets can be regarded as the spaces of C-points of the functors Zr and Lo sending
any C-algebra R to Z(R ®¢ F) and (R ®¢ 0), respectively. These functors can be
endowed with the structure of an ind-scheme.

If G is an algebraic group, the space Gr is called the formal loop group and Go is
the formal arc group. The homogeneous space Grg = Gr/Gg is known as the affine
Grassmannian of G.

The Cartan decomposition

Let G be a reductive algebraic group over C and T C G a maximal torus. Any
cocharacter A € X,(T) defines a formal loop z* € G(F) by taking the image of the
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formal variable z € F under the induced homomorphism
A(F) : P — T(F) c G(F).

We now have the following result, due to Iwahori and Matsumoto | ], but
usually called the Cartan decomposition of G(F).

Proposition 1.7.1. If we fix a Borel subgroup B C G containing T, we can decompose

GH= | | 6060).

AeX(T)+

Proof. This is a consequence of the Bruhat decomposition of Tits systems. Indeed,
one can take the group ® = G(F) = C*, the subgroups 3B, defined as the inverse
image of B under the evaluation map G(0)=~C* — G,and %t = %M (Ng(T)xC),
and the subset S of natural generators of the affine Weyl group W = X,(T) =< W.
It is easy to check that (®, B, N, ©) satisfies the required axioms and thus forms a
Tits system, and its Weyl group is precisely W. Moreover, one can take as a set of
representatives of W in N the dominant cocharacter semigroup X.(T).. Therefore,
the Bruhat decomposition of this Tits system gives

GA)=C =6 = |_| BB,
ASX(T)s

from where the result follows. O

By using the properties of Tits systems (or as a consequence of our later
Proposition 1.7.6), one can also prove the following.

Proposition 1.7.2. The closure of any orbit G(0)z*G(0) inside G(F) is equal to

G(0)z2G(0) = |_| G(0)zHG(0).
HEX.(T), <A

Loop parametrization of a symmetric variety

The results stated above for reductive groups can be easily generalized to sym-
metric varieties. We thus begin by taking a reductive algebraic group G over
C, an involution © € Auty(G), a maximal 0-split torus A C G, a maximal torus
T C G containing A, and a Borel subgroup B C G contained in a minimal 6-split
parabolic subgroup and containing T.

Proposition 1.7.3. Given any symmetric subgroup H C G associated to 0, we can
decompose

G/MFH= || GOz

AeXL(An)-

Remark 1.7.4. Note that z* is a well defined element of G/H(F) since there is a
natural inclusion Ay = T/(TNH) — G/H.
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Proof. We begin by reducing to the case H = Gg. Thus, suppose that there is
an element of zXAGe)- in the orbit of every element of (G/Gg)(F). Since, by
definition of a symmetric subgroup, we have H C Gg, there is a natural projection
G/H — G/Gg and thus (G/H)(F) — (G/Gg)(F). Moreover, since the inverse image
of Ag, under the projection G/H — G/Gg is An, the inverse image of 2X%(Acg)-
is Z%(Ar)-_ Since the projection is G(O)-equivariant, we conclude that there is an
element of zZX<(A1)- in the orbit of every element of (G/H)(F). Uniqueness follows
from the fact that anti-dominant weights of A are anti-dominant for T and from
the Cartan decomposition of G(F).

It remains to show that for every ¢ € (G/Gg)(F) there exists some A € X.(Ag,)-

such that z» is in the G(O)-orbit of ¢. Consider then the wonderful compactifica-
tion G/Gg of G/Gg. Since it is projective, by the valuative criterion of properness,
every formal loop ¢ € (G/Gg)(F) extends to a formal arc ¢ € G/Gg(0). By the

local structure theorem, there exists some unipotent group P, and some formal
arcs g € G(O), u € P*(0) and a € A(O) such that

¢ = gua.

Here, we recall that A denoted the A-toric variety

A = Spec (@ C[e—2a]) )

xeAp

which can be identified with the l-dimensional affine space A' in such a way that
the embedding A < A is given explicitly as a > (a™2%1, ..., a 2%). Therefore, a
cocharacter A : C* — A extends to a morphism A! — A if and only if (A, 2&;) < 0
foreveryi=1,...,1, thatis,if A € in,_ = X«(Agy)-. Therefore, a = az? for some
A € Xu(Agy)-- O

Remark1.7.5. LetH C G be a symmetric subgroup associated to 0 and f € C[G/H]y
a function with weight x € X*(A1)+. Recall that for any dominant weight ¥, if Vy
is the irreducible representation with highest weight x, we have an isomorphism
V5 = Vowgy, for wy the longest element of the Weyl group, so f(gt) = t7VXf(g)
forany g € G and t € T. Therefore, if ¢ = gz* € G(0)z", we have

f(P) = (%)X f(g) = 2 AN f(g).

Thus, f(¢) is a Laurent series with highest pole order less or equal than (A, wpx).

Let us describe now the closures of the orbits G(0)z*. Recall that we can define
an order in X(Ay)- by putting A < wif and only if A — u € ~IN(A{).

Proposition 1.7.6. For any A € X.(An)-, the closure of G(O)z» is equal to

G(0)z = |_| G(O)zM.
HEX. (A ), LA
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Proof. Let f € C[G/H]y be a function with weight x € X*(An)+. If d € G(O)z* is
such that ¢ belongs to the closure of G(0)z” then the highest pole order of f(¢)
must be less or equal than (A, wox), so

(1, wox) < (A wox) = (A= p,wox) = 0.
Now, since woX*(An)+ = X*(An)-, we conclude that A — p € —]N(Ag).
Reciprocally, we want to show that for every p < A, G(0)z* € G(0)z*. It
suffices to find an element ¢ € G(O)z" with ¢ € G(O)z*. The argument is anal-
ogous to the one given for the affine Grassmannian (see [ ). We do it for
G = SL, and the general result follows by considering the canonical homomor-

phism SL, — G associated to the root & with A — u = &". Given any m € IN we
can consider the family

zm 0 m
M 4 g~ly,-m+l -m ESLZ(O)Z ’

for t € €. One can easily check that

t—l 0 1 _tZZm—l Zm 0 _Zm—l _Zm—l
( 0 t) (0 1 ) (Z_m + t1z—m+l z‘m) - (tz‘m +z7mH pmm f

which lies in the same orbit SL,(0)z™™ as the original matrix. Now, the limit as
t — 0 clearly has to lie in the closure SL,(0)z™™, but this limit is

_.,m-1 __m-1 _2m _.2m
(Z_Zml Zo ):( Zl ZO )z—m“ € SLy(O)z~(m-D

We conclude that SL»(0)z= (™= ¢ SL,(9)z—™ O

Loop parametrization of the enveloping embedding

Suppose now that G is semisimple simply-connected. We describe now the formal
loops on the enveloping embedding Env(G/G?).

We begin by noticing, as in the proof of Proposition 1.7.3 that if A is an A-toric
variety with weight semigroup P,(A) C A, then an element a € A(F) extends to
an element a@ € A(0O) if and only if a € A(9)z?, for A in the dual semigroup

PL(A)" = {AeX(A): (A x) € N,Vx € P,(A)}.
In other words,
A(F) N A(0) = |_| A(0)Z>.
A€PL(A)Y
In particular, we get

AGe(F) N AEnv(G/Ge)(O) = |_| AGe(O)ZA/
AeX(Ag,)-

since X*(Ag,)- = (-IN(Ap))".
Consider an anti-dominant cocharacter A € X.(Ag,)- and define Env*(G/G?)
as the fibered product
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Env*(G/G®) —— Ag, x Env(G/G?)

| l

—WwWpA
Spec ) —=—— Agu(G/Go)

where the vertical map on the right is the multiplication of the abelianization
map Ogny(g/Go) With the natural embedding Ag, — Agn(g/ce)- Replacing
Env(G/G?) by the open subvariety Env’(G/G®) we define an open subvariety
Env*’(G/G®). The above stratification induces

Env(G/G®)(0) N (G/G®).(F) = |_| Env(G/G9)(0).
AEX (AGg)-

We also note that
Env™(G/G®)(0) = EnvM(G/G®)(0) N Env®(G/G®)(9)

Proposition 1.7.7. For any ¢ € (G/G®),(F), we have ¢ € Env*(G/G®)(0) if and only
if the image of & in (G/Ge)(F) belongs to G(0)z>. Moreover, ¢ € Env™*(G/G9)(0) if
and only if the image of & in (G/Ge)(F) belongs to G(0)z>.

Proof. 1t suffices to show it for ¢ = (z",z") with p,n € X.(Ag,)-. First, note that
by construction we must have z" = z7WoA sowe getn = —wpA. On the other hand,
¢ € Env(G/G?)(0) if and only if f+(d) € O for any f € C[G/G®]. Thus, for any
X € X*(Ago)+ and for any f € C[G/G®], we have

0> f (2", 2") = Z{woxm) L (1)
Therefore,

0 < (wox,m) + (X, 1) = (Wox, —WoA) + (X 1) = (X, L —A).

We have this for any x € X*(Age)s, so u —A € N(A§) and A > . Finally,
¢ € Env’(G/G9)(0) if and only if f1($) € O does not vanish, thus, if and only if
0> (x,L—A),SON = L. O

1.8 THE THEORY OF REDUCTIVE MONOIDS

Reductive monoids

As a particular example of the theory of symmetric embeddings developed in the
previous sections, we can obtain the theory of reductive monoids. We recall the
main results here, since we use them in the following.

Definition 1.8.1. Analgebraic semigroup over Cis asemigroup objectin the category
of C-schemes, that is, a C-scheme M endowed with an associative multiplication
-t M XM — M. When M has a multiplicative identity 1 € M(C), it is an algebraic
monoid. Invertible elements form an algebraic group M* <— M. When M* is
reductive, we say that M is a reductive monoid.
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Let G be a reductive group over C. It is a well-known result of Rittatore (see
[ , Theorem 27.5] for a proof) that monoids with M* = G are the same as
simple affine (G X G)-equivariant embeddings of G under the multiplication action

(91,92) - 9 = 91992.

Recall from the diagonal example, Example 1.2.5, that G can be identified with
the symmetric variety (G X G)/A(G). Guay’s theory of symmetric embeddings
[ ]is modelled after the theory of reductive monoids as developed originally
by Vinberg [ I

Abelianization

Let us begin by describing the abelianization of a monoid, as a particular case of
the abelianization of a symmetric embedding. We start by considering a reductive
monoid M. Its unit group M* is a reductive group and thus it can be decomposed
as a product M* = GZ, where G = (M*)’ is the derived group of M* and Z = Z?\AX
is its connected centre, which is a torus. We put Apm = Z/(Z N G).

If welet T € G be a maximal torus of G, TZ C¢ M* is a maximal torus
of M*. Now, P(M) = X*(TZ) and P.(M) c X*(TZ);. Now, Z = (TZ)/Z and
Am =(TZ)/((TZ) NnT), so we have a natural inclusion X*(Apn) <— X*(TZ).

The abelianization of M is the GIT quotient Ay :== M J/ (G’ X G’), and the
natural projection oepm : M — Ay is the abelianization map. This quotient Ay,
can also be understood as a Anq-toric variety, where Z = ZOG is the connected
centre of G. Indeed, Anm is the toric variety with weight semigroup

Pi(Am) = P+(M) N X (Am).

Definition 1.8.2. A monoid M is very flat if the abelianization map am : M — Am
is dominant, flat and with integral fibres.

Vinberg's classification

Guay'’s classification of symmetric embeddings is a generalization of Vinberg’s
classification of reductive monoids | , Theorem 4]. We assume now that G is
a semisimple simply-connected group.

Theorem 1.8.3 (Vinberg). A reductive monoid M with (M*)" = G is very flat if and
only if there exists a homomorphism

P XH(T) — X(2),
such that, for any (t,z) € T X Z and for any x € X*(T), we have
tX = 27X,
and such that the weight semigroup P(M) is of the form
P+(M) = {(x, b(x) +n) : x € X'(T),n € Pr(Am)}.

A fixed point of a monoid is just a zero element in it, that is, an element 0 € M
such that x0 = Ox = 0 for every x € M. If a monoid has a zero, then it is unique.
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The enveloping monoid

A morphism of monoids M; — M, is excellent if it is excellent as a morphism of
symmetric embeddings, that is, if it induces a Cartesian diagram

M — My

Lo

Ay — As.

The category VF(G) is the category of very flat monoids M with (M*)" = G. We can
also consider the category VFy(G) of very flat monoids with a zero element. The
Guay construction in this case yields the (Vinberg) enveloping monoid Env(G),
which is determined by the unit group G; = (GXT)/Zg and the weight semigroup

P.(Env(G)) = {(X/ wox +m) X € X(T)+,m € —Z+<Ag>} U {(0,0)}.

This is clearly a very flat monoid with zero. The complement Env’(G) = Env(G) \
{0} is a smooth open subvariety of Env(G) and the GIT quotient Env'(G) / T is

isomorphic to the wonderful compactification Gad of G, The good properties of
the Vinberg monoid are given in the following [ , Theorem 5].

Theorem 1.8.4 (Vinberg). The enveloping monoid Env(G) is a versal object of the
category VF(G) and a universal object of VFo(G).

The invariant theory of a monoid

Richardson’s theorem 1.6.14 is a generalization of the (multiplicative version of)
the Chevalley restriction theorem. This theorem says that the restriction homo-
morphism C[G] — C[T] induces an isomorphism C[G]® = C[T]WT, where G
acts on itself through the adjoint action and Wt is the Weyl group of T. We
denotecg =G J/ G = T/W.

If G is semisimple simply-connected, since C[T] = C[eX(M] and the lattice
X*(T) is generated by the fundamental weights of the root system @, of T, there is
an isomorphism

Clcg] =C[by,...,by],

where 1 is the rank of G and each b; = tr(p;) is the trace of the fundamental
representation p; : G — GL(V,,,) associated to the i-th fundamental weight wj.

The extension of the Chevalley isomorphism to a very flat monoid is a conse-
quence of the results of Vinberg [ ]. Let us denote cpy = M /| G under the
adjoint action of G on M.

Proposition 1.8.5 (Vinberg). If M is a very flat monoid, there is an isomorphism

CMm = Cg XAM.
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Formal loop parametrization

The Cartan decomposition of the formal loop group G(F) can be extended to an
stratification of the enveloping monoid Env(G). First of all, note that

T4F) 0 Apnye)(©) = | | T©z™,
AeX(T)s

since X*(T);+ = (N(Ay))". For any dominant cocharacter A € X.(T)+ we can de-
fine Env*(G) and Env*(G) as fibered products in the same way as we did for
symmetric varieties and obtain

Env(G)(0) N G4 (F) = |_| Env(G)(0).
AeX*(T)

Proposition 1.7.7 in this case yields the following result of J. Chi [ , Lemma
2.5.1].

Proposition 1.8.6 (J. Chi). For any ¢ € G (F), we have ¢ € Env(G)(O) if and only if
the image of ¢ in G*4(F) belongs to G(O)z>G(O). Moreover, ¢ € Env**(G)(0) if and
only if the image of & in G3(F) belongs to G(O0)z*G(0O).






MULTIPLICATIVE HIGGS BUNDLES AND
INVOLUTIONS

2.1 MULTIPLICATIVE HIGGS BUNDLES

The generalized Hitchin map

Our study concerning Higgs pairs and Hitchin maps associated to symmetric
varieties fits into a wider picture envisioned by Morrissey and Ngo [VIIN, I
We explain here their point of view.

Let X be an affine variety over C endowed with two commuting actions under
two reductive algebraic groups H and Z. In other words, X is acted on by the
product H X Z. We let ¢z denote the GIT quotient

cr=X/H= Spec(C[Z]H).

Apart from the GIT quotient, we can also consider the "stacky" quotient. If
we regard stacks as sheaves of groupoids on the big étale site (Sch/C)¢;, then
the quotient stack [£/H] can be understood as the stackyfication of the presheaf
sending every C-scheme S to the action groupoid [Z(S), H(S)], whose objects are the
S-points of £ and the morphisms between two S-points x,y € X(S) are given by
the set

Homz(s) H(s) (% y) = {h € H(S) : y = h-x}.

It follows easily by imposing the descent condition to this presheaf of groupoids
that the quotient stack [~ /H] sends a C-scheme S to a groupoid whose objects are

Obj; 5 /y(s) = {(E, f) : E = Ha H-torsor, f : E — I H-equivariant} ,

and whose morphisms are morphisms of H-torsors commuting with f.
There is a natural morphism from the quotient stack [~ /H] to the GIT quotient
Cx
[Z / H] — Cyx.
Since the actions commute, this map is Z-equivariant and thus we can also define

a morphism
[2/(Hx Z)] — [ex/Z].

93
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We also have a natural map [c¢5 /Z] — BZ = [Spec C/Z]. The generalized Hitchin
map is constructed from the sequence

[£/(Hx Z)] —> [e5/Z] — BZ.

We start by taking X a smooth projective C-variety. A morphism X — BZ
is by definition a Z-bundle L — X. We can now consider .#1 (X) and %y (X) the
stacks of sections of the associated stacks L([Z/H]) and L(cx) over X, respectively.
Equivalently, 1 (X) and %1 (L) are the the stacks of maps from X to [Z/(H X Z)]
and to [cxs /Z], respectively, lying over the map X — BZ defined by L.

The resulting morphism

M1(L) — BL(Z)

is the generalized Hitchin map.
We study now some well-known examples that fit in this general picture.

Example 2.1.1 (The Hitchin fibration). The Hitchin fibration as conceived origi-
nally by Hitchin [ ]is obtained by taking H = G to be any reductive algebraic
group over C, Z = C* and L = g the Lie algebra of G, endowed with the adjoint
action of G and with the homothety action of C*.

In this case, the Chevalley restriction theorem tells us that

cg=9/G=t/W,

where t C gis a maximal Cartan subalgebra, and W is the Weyl group. Therefore,
the quotient ¢ is just the affine space A", where 1 is the rank of the group, with
coordinates given by a set of generators by, ..., b, € C[t]W.

If X is a curve, closed points of the stack ./ (X), for L — X a line bundle,
are L-twisted Higgs bundles, that is, pairs (E, ¢) with E — X a G-bundle and
¢ € HY(X,E(g) ® L). Usual Higgs bundles over curves as introduced by Hitchin
[ ] arise with L = Kx the canonical line bundle of X.

More generally, one can consider twisting by higher rank bundles if one instead
takes Z = GL;, and X = €' the commuting scheme

(Sg‘ = {(xl,...,xn) €g:[xi,x]=0,Vij= 1,...,n},

with the natural action of GL,,. This can be defined over a smooth complex
projective variety X of any dimension, and if we fix n = dim X and the twisting
bundle V : X — BGL, to be the cotangent bundle V = Q;, be recover the
usual notion of Higgs bundles over projective varieties as introduced by Simpson

[ ]

Example 2.1.2 (The (additive) Hitchin fibration for symmetric pairs). Let us con-
sider now a reductive algebraic group G over C and a symmetric subgroup H C G
associated to an involution 6 € Auty(G). The involution 6 induces a decomposition
in g in the +1 and —1 eigenspaces

g=g’@®m
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and the adjoint action of G on g induces an action of H on m. We can now
consider a Hitchin fibration associated to H, Z = C* and £ = m. This is the Hitchin
fibration for the symmetric pair (G, H). This fibration has been studied in the thesis

of Peén-Nieto [ ] and in her later work with Garcia-Prada and Ramanan
[ , ]. A complete description will be provided in forthcoming
work by Hameister and Morrissey [V, 1.

The objects appearing in this situation are sometimes called Higgs bundles
for real groups. This is because when one considers the Hitchin fibration for the
symmetric pair (G, G®) over a curve X, the closed points of the stack .Zx, (m) which
satisfy some condition of polystability correspond under the nonabelian Hodge
correspondence to representations of 711(X) into the real form GR associated to 6.
The reader can consult [ ] for more information about this.

Example 2.1.3 (The Hitchin map for reductive monoids). Consider a semisimple
simply-connected group G over C and M a very flat monoid with (M*)" = G.
The adjoint action of G on itself extends to an action on M. Moreover, the torus
= Z(,)vlX also acts on M.

We can then consider the generalized Hitchin map corresponding to the se-
quence

[M/(GXx Z)] — [em/Z] — BZ.

Moreover, the abelianization map apn : M — Apm factors through ca, so we can
consider the sequence

[M/(G X Z)] — [em/Z] — [Am/Z] — BZ

Given a smooth complex projective curve X, we can consider .#(M), %(M) and
4 (M) the stacks of maps from X to [M/(GXZ)], [em/Z] and [Am /Z], respectively.
We obtain a sequence

M(M) —— B(M) — (M) — Bunz(X).
The map h : #£(M) — %B(M) is the Hitchin map associated to the monoid M.

Multiplicative G-Higgs bundles

Let G be a reductive algebraic group over C and X a smooth complex projective
curve. For any d € Z, we denote by X4 = X4/G4 the d-th symmetric product, so
thatelements D € X4 are effective divisors of degree d on X. More generally, given
atupled = (dy, ..., dn) of positive integers, we denote Xq = Xg, X---XXq, and to
any element D = (Dy,...,Dy) € Xq we can associate the divisorD = D1+---+Dy,.
We denote by |D| the support of the divisor D.

Definition 2.1.4. Let D € Xq. A multiplicative G-Higgs bundle with singularities
in D is a pair (E, ¢), where E — X is a G-bundle and ¢ is a section of the adjoint
bundle of groups E(G) defined over X \ |D]|.

We denote by .#4(G) the moduli stack of tuples (D, E, ¢) with D € Xgq and
(E, @) a multiplicative G-Higgs bundle with singularities in D.
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Remark 2.1.5. To any tuple (D,E, ¢) € #a(G) and any point x € |D| we can
associate an invariant invy (@) € X.(T)+, for T € G a maximal torus and a fixed
choice of dominant Weyl chamber. This invariant is constructed by considering
the completion Oy of the local ring Ox « of X at x. By picking a local parameter,
the ring Oy is isomorphic to the ring O of formal power series, and its quotient
field Fx = qf(Ox) = F. If we fix two trivializations of E around the formal disc
Spec(Oy) and restrict ¢ to Spec(Fx) we get an element of G(Fy) which is well
defined up to the choice of the trivializations, thus, up to the action of G(O) X
G(Oy) by left and right multiplication. That is, we obtain a well defined element
Ax € G(Ox)\G(Fx)/G(Ox). Recall that G(0)\G(F)/G(0) is in natural bijection with
X«(T);. We thus define
invy (@) = A € Xo(T),.

Globally, if D = }, cx nxx, we get a X.(T)4-valued divisor

inv(ep) = Z My invy (@)x.

xeX

From the remark above it follows that we can prescribe the value of the invari-
ant inv(¢) in order to obtain a finite-type moduli stack. That is, we define

Max(G) ={(D,E, @) € #a(G) : inv(¢) = A-D}.

Here, A = (A1,...,Ay) is a tuple of dominant cocharacters A; € X.(T); and A-D =

1 AiDj. For any element (D, E, @) in .#q,A(G), we say that the pair (E, ) is a
multiplicative G-Higgs bundle with singularity type (D, ). The order on X.(T)+
induces an order on X.(T),-valued divisors and thus we can also define the bigger
stack

M45(G) = {(D,E, @) € M4(G) : inv(g) < A-D}.

We also remark that there is a restriction for the value of the invariant inv(¢),
as explained by Hurtubise and Markman [ , Remark 8.1]. Let D € Xq be a
tuple of divisors with D = )} .x nxx and consider T*¢ the maximal torus of the
simply-connected group G*° isogenous to G. Recall that that there is a natural
inclusion X.(T*¢) c X.(T); in fact, X.(T*¢) is the coroot lattice of the root system @,
and the quotient X.(T)/X.(T*) is by definition the fundamental group m;(G) of G.

Proposition 2.1.6. If (E, @) is a multiplicative G-Higgs bundle with singularities in D,
then

D, M inv(@) € X.(T%)..
xeX

Proof. Consider the open cover U of X defined by taking a small disc Uy around
any point x € |D| of the support of D and Uy = X\ |D|. Fix a trivialization T of
E over every U, and consider the 1-cocycle g € Z!(U, E(G)) with gxo = 15! 0 ©.
There is a natural short exact sequence

1 — Xxm(G) — E(G*) — E(G) — 0,
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which defines a natural homomorphism H!(X, E(G)) — H2(X, 7t;(G)). Identifying
H2(X, 1(G)) with 711(G), the image of (the class of) g is clearly equal to the class
of Y ex Ny inVx (@), but note that g defines the trivial G-bundle, so this element
must vanish in 711 (G). O

Remark 2.1.7. Compare the previous proposition with Proposition 3.2.6.

The multiplicative Hitchin map

Let us assume now that we are in the situation in which G is semisimple simply-
connected so C[G]® is a polynomial algebra and generated by the functions
by, ..., by with by = tr(pi), where p; is the fundamental representation associ-
ated to the fundamental dominant weight w; € X*(T);. Consider now the bundle
Bar(G) — Xq whose fibre over D is the space of sections

T

Ba(G)p = P H(X, 0x((wi, A - D))).

i=1

Definition 2.1.8. The Hitchin map for multiplicative G-Higgs bundles is the mor-
phism

haa : Mar(G) — Baa(G)
(D,E, @) — (b1(@),..., br(@)).

In the following sections, we will be mainly concerned with the simpler case
where the d; are equal to 1 and thus the divisors D; consist of single points, so
we have that D = x = (x4, ...,xn) is just a tuple of n different points of X. In that

case, denoting 1= (1,...,1), we define

Mx A (G) := ﬂi}\(G)x = {(E, ®) € M;(G) 1 inv(p) =A- x} )
We can also consider the bigger stack

My 5 (G) := M 5(G)x = {(E, ¢) € #;(G) : inv(g) < A-x}.

When G is semisimple simply-connected, we can also consider the Hitchin base
T
FBx A(G) = B; , (G)x = EH HU(X, Ox({wi, A+ X)),
i=1

and the Hitchin map

hxa: %X,A(G) - %X,?\(G)
(E/ (P) — (bl((P), see /bT((p))

The multiplicative Hitchin map can be recovered as a pullback of the Hitchin
map for monoids as follows. Let A = (Aq,...,An) be a tuple of dominant
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cocharacters A; € X.(T);. The natural projection T — T3¢ induces a projection
X«(T); — X.(T2d),. Therefore A defines a multiplicative map

A ()" — T
(z1,...,2n) zi‘l ceaghn
which extends to a map A : A™ — Agp(g). Indeed, recall that P, (Env(G)) =
Z. (), 50 Po(Env(G))Y = X.(T2!),. We can now define a very flat monoid M*
such that the derived group of its unit group is equal to G through the Cartesian
diagram

M» — Env(G)

\L l/‘xEnv(G)
A™ ﬂ AEnV(G )

By construction we get that the connected centre of the unit group of M? is
Z = (C)™ and Apr = A™, so Bunz(X) = Pic(X)™ and, for any tuple of line
bundles L = (Ly,...,Ly), the fibre of the natural map o (M?) — Bunz(X) over L
is oL (M) = @?:1 HO(X, ;). If we replace Env(G) by Env’(G) we obtain an open
dense subvariety MM c M?, and we can also consider the stack .#(M??) of
maps from X to [M*/(G x Z)] which is naturally an open substack of .#(M?).
Consider now d = (dj,...,dn) a tuple of positive integers and an element
D = (Dy,...,Dyn) € Xq. Toeach D; we can associate the line bundle Ox(D;) which,
since Dj is efective has a canonical non-vanishing section s; € HO(X, Ox(D;)). Let
us denote Ox(D) = @?:1 Ox(Di) and s = (s1,...,5n). The following result is
essentially contained in the works of Bouthier, J. Chi and G. Wang [ , ,
, , ], and it also follows from our more general result Theorem
2.2.5.

Theorem 2.1.9 (Bouthier-Chi-Wang). The map

Xq — A (M)
D +— (0x(D), s)

induces the following diagram, where all squares are Cartesian,

h
MaN(G) — Myq5(G) — Bar(G) — Xa

l | | l

M) 5 (MP) —25 B(MA) —— a(MD).

The moduli space of simple pairs

Let G be a reductive algebraic group over C. Apart from the moduli stack
M a,\(G)p, which classifies multiplicative G-Higgs bundles with singularity type
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(D, A), after an argument by Hurtubise and Markman [ ], one can consider
a moduli space for simple multiplicative Higgs bundles.

We begin by noting that, if (E, ¢) is a multiplicative G-Higgs bundle, the section
¢ of E(G) can be regarded as an automorphism ¢ : E — E defined over X’ the
complement of some finite subset of X. A morphism of multiplicative G-Higgs
bundles (E1, ¢1) — (E2, ¢2) can be then regarded as a map E; — E; such that the
following diagram commutes

Eilxx — Ealx

Lo L

Eilxx — Ealx.

Since the centre Zg C G acts trivially on E(G), automorphisms of E of the form
e — e-zforz € Zg give automorphisms of any multiplicative G-Higgs bundle of
the form (E, @). This gives a natural inclusion Zg — Aut(E, ¢).

Definition 2.1.10. A multiplicative G-Higgs bundle (E, ) is simple if the natural
inclusion Zg — Aut(E, @) is a bijection.

The argument for the existence of a moduli space of simple multiplicative
Higgs bundles goes as follows. Let p : G — GL(V) be a faithful representation of
G and, for T ¢ G a maximal torus, let

P(V)={x € X*(T): 3v € V' \ {0} such that p(t)v = tXv,Vt € T}
be its weight lattice. For any cocharacter A € X.(T) we can define the number
do(A) = min {{WA, x) : w € Wr,x € P(V)},

for Wt the Weyl group of T. Let us fix a Borel subgroup B of G containing T. If
A € Xi(T)4, for any ¢ € G(F) that lies in the orbit G(0)z*G(0), the highest pole
order in the coefficients of the matrix p(¢) € End V ® Fis equal to d,(A).

Let D = (Dy,...,Dn) be a tuple of effective divisors D; € Xg,, let A =
(A1,...,An) be a tuple of dominant cocharacters A; € X.(T)s, and consider the
X.(T)s-valued divisor A - D = }I*; A;D;. Define now the divisor

(A-D), = - Z d(M)Ds.
i=1

Then, for any multiplicative G-Higgs bundle (E, ¢) with inv(p) < A - D, the
representation p induces a section

p(p) € HY(X\ |D|,End E(V) ® Ox((A - D),)).

Indeed, if A > p, then d,(A) < dp(p), so (A - D), = (n-D),.
A pair (E, @), where E is a G-bundle on X and ¢ is a section of End E(V) ® L for
some representation p : G — GL(V) and for some line bundle L — X is called an
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L-twisted p-Higgs pair. We denote the moduli stack of these pairs by Higgs; (G).
What we have just shown is that p induces an inclusion

M 7(G)p — Higgss, (a.p),),0(C):

The stability conditions and good moduli space theory for L-twisted p-Higgs
pairs are well known (the reader may refer to [ Jor| ] for general
treatments of the topic). The existence of moduli spaces of simple L-twisted p-
Higgs bundles guarantees the existence of good moduli spaces of simple pairs
MD/;(G) and Mp A(G) for /%d/;(G)D and 4 (G)p, at least as non-Hausdorff
complex spaces. For more details, see Remark 2.5 in [ I

The tangent space

Although the moduli space of simple pairs Mp a(G) might be non-Hausdorff,
one can still study its tangent space at some point [E, ¢], the isomorphism class of
a pair (E, @). Using standard arguments in deformation theory (see, for example
[ 1), Hurtubise and Markman [ ] showed that the Zariski tangent space
of Mp A(G) at [E, @] is equal to ]Hl(C[E,(p]), the first hypercohomology space of
the deformation complex

Cleo1 E(a) =% ad(E, ).

Here, ad(E, ) is a vector bundle on X defined by the following short exact se-
quence

0 — {(a,b): a+Ady,(b) =0} —— E(g9) ® E(9) — ad(E, ) —> O,

where, if we regard b € E(g) and ¢ € E(G), asmaps fp : E — g, f, : E = G, by
Ad(b) we mean the map sending any e € E to Ady,(c)(fv(e)). The map ad,, is
defined as

ady =Ly — Ry,

where L, and Ry, are given by the following diagram

E(g)

\Lil N
E(g) ® E(9) — ad(E, ¢)
izT y
E(9).
Remark 2.1.11. In terms of a faithful representation p : G — GL(V), the maps

L, and R, correspond precisely to left and right multiplication by p(¢), and the
deformation complex becomes

adg(p) : End E(V,) — End E(V,) ® Ox((A - D)y)
Y +— [p(9), ¥].
This is precisely the deformation complex for Ox((A-D),)-twisted Higgs bundles.
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We can also give a explicit description of the tangent space H'(C[g ,1). We
do this by taking an acyclic resolution of the complex Cg ] and computing
cohomology of the total complex. For example, we can take the Cech resolution
associated to an acyclic étale cover of X, that we denote by {U;};. We can now
compute H!(C[g ) as the quotient Z/B, where Z consists of pairs (s, t), with
S = (Sij)i,j/ t = (ty), for the Sij € IN{SF Uj,E(g)), and t; € T'(Uy, ad(E, @)),
satisfying the equations

$ij T Sjk = Sij,
ti —t; = adp(sij);

and B is the set of pairs (s, t) of the form s = (r;{ — 7j);; and t = (ad(r1));, for
some 1 = (11)i, with m; € I'(U;, E(g)). Now one obtains a deformation of the pair
(E, @) from a pair (s, t) by considering the pair (E, @)s,+) over X x Spec(C[3]), for
C[5] = C[t]/(t?), determined by

g°® = g(1+29s),
Pt = Pp(1 + 5t).

Here, g = (gij)i,; are the transition functions of E and ¢ = (¢$4); is determined by
restricting ¢ to the U,;.

The symplectic structure

Going on with the study of the deformation theory of multiplicative Higgs bun-
dles, one can show that when the curve X has genus 1 (i.e., if it is an elliptic
curve over C) the moduli space admits a symplectic structure. This is a result
of Hurtubise and Markman [ , Theorem 2.2], and we recall their argument
here.

Consider the dual complex of the deformation complex considered above

:
Clepr:  ad(E @) —2 E@).

Grothendieck-Serre duality gives a perfect pairing
]HI(C[E,(\O]) X ]Hl(CEE,(p] ® Kx) — Hl(X, Kx) = C.

If we assume that Kx = Ox (which for a smooth projective curve only happens
when its genus is 1), we get a perfect pairing between H'(C(g, ) and H! (CEE 0] ), SO
we can identify the cotangent space of the moduli space at [E, ¢ ] with l[-Il(CEE (p]).

An invariant bilinear form on g gives a natural isomorphism between g and its

dual g*. Under this isomorphism, the complex CEE ] €N be identified with

Cro ad(E, 1) =299 E(g).



102 CHAPTER 2. MULTIPLICATIVE HIGGS BUNDLES AND INVOLUTIONS

We can then give a explicit description of the cotangent space ]Hl(C’[*E (p]) as the

quotient Z*/B*, where Z* consists of pairs (o, T), with o = (0j)1j, T = (Ti)i,

oy € (Ui N'U;j, ad(E, o 1), i € T(Uy, E(g)), satisfying

0ij + Ojkx = Oij,
Ti — Tj = —ade(04j);

and B* is the set of pairs (o, T) of the form o = (n; —nj)i; and T = (-ad,(Ni))i,
for some 1 = ()i, with 3 € T'(Ui,ad(E, @ !)). One can now check that, under

this description, the Grothendieck-Serre duality pairing is given explicitly by
@ : H'(Clg, 1) X HY(CJ ,,; ® Kx) — H'(X,Kx) = €
([S/ t]/ [0-/ T]) L q)((sl t)/ (0-/ T)) = <SI T) - <O-/ t>/

where (-, —) denotes the natural duality pairing.
Finally, note that we can define a morphism of complexes ¥ : Cfg, o] — C}

as in the following diagram

d
Cre, o E(g) —2— ad(E, )
Pl e
Cleg:  adEe™) —5 E().

The adjoint of this morphism is given by

ad
Cle o] E(g) ——> ad(E, ¢)
b R
* _ —ad
C[E,(p] : ad(E/(P 1) % E(g)

Now, these two maps are homotopic, since the following diagram commutes

E) —2 5 ad(E, ¢)

\L—ad@% \Lad(pq

ad(E, o) —423 E(g),

[E @

]I

forh = L,-10R,-1. Therefore, ¥ and ¥' define the same map in hypercohomology.
Moreover, this map is an isomorphism. We can now define the Hurtubise—Markman

symplectic form as
Q : HYCg, 1) x H(Cg,p) — C
(v, W) — O (v, ¥Y(w)).
This is obviously non-degenerate and it is clearly a 2-form since
Q((s,1), (s, 1) = (s, ¥(t)) = (¥(s"), 1) = (¥'(5), ') = (", W' (1)
= <\y(s)/ tl> - <S// W(t)) = —Q((SI, tl)/ (S, t))

Hurtubise and Markman [ ] show that it is closed.
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2.2 THE HITCHIN MAP FOR SYMMETRIC VARIETIES

Our purpose in this section is to give a generalization of the multiplicative Hitchin
map to the more general situation of a pair formed by a reductive group and an
involution on it. Equivalently, this can be understood as a "multiplicative analog"
of the Hitchin fibration for symmetric pairs.

The multiplicative Hitchin map for symmetric embeddings

We begin by taking a semisimple simply-connected group G over C and an invo-
lution © € Auty(G). Let Z be a very flat symmetric embedding with O} = G/ Go.

The left multiplication action of G® on G/G® extends to an action of G® on Z.
Moreover, if Oy is a symmetric variety the form Gz/Hz for some torus Z, then
the torus Zy = Z/Z; also acts on X through the action of Z.

We can now consider the quotient stacks [£/G°] and [Z/(G® x Z5)]. The
quotient map £ — ¢y = £ / G® induces a natural map [£/G®] — c5. We can also
descend this to a map [£/(G® X Z5)] — [cx/Zs].

From the description of ¢s that we gave in the previous section, it follows that
the abelianization map oy : ¥ — Ay = X // G factors through ¥ — ¢z — Ay.
The torus Zs clearly acts on the abelianization Ay, so composing with the natural
map Ay — Spec C, we obtain a sequence of stacks

[£/(G® x Z5)] — [ex/Zs] — [As/Zs] — BZ:.
Let X be a smooth complex projective curve. Let (%), B(X) and </ (X) denote

the stacks of maps from X to [£/(G® x Z5)], [es/Zs] and [As/Zs], respectively.
We obtain a sequence

ML) —3 B(L) — (L) — Bunz, (X).

Definition 2.2.1. The map h : #(X) — 2B(X) is the Hitchin map associated to the
symmetric embedding L.

If we let L — X be a Zs-bundle, the natural map X — BZs associated to L
induces the following diagram, where all squares are Cartesian

L([£/G®]) — L(cz) — L(Ag) — X

| | | L

[Z/(G® x Z5)| — [es/Zs) — [As/Zs] — BZs.

These L([£/G®]), L(cx) and L(Ayx) are naturally stacks over X and we denote by
M1 (L), Br(X) and o1 (L) their stacks of sections. We obtain a sequence

(L) s B(D) — dL(E).
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This sequence is the fibre over L € Bunz, (X) of the sequence defined above. Fixing
a section s in &/ (X), over it we can also obtain a morphism of stacks

M(5) 2 B (5).

We can give a more explicit description of all the objects taking part in this
definition. The bundle L(Ay) is just the associated bundle over X defined by the
action of Zs on the Ax-toric variety Ay. Since Ay is an affine space, L(Ax) is
a vector bundle of rank equal to the rank of As. The bundle L(cx) is also an
associated bundle, this time to the action of Zy on ¢y and, since cy is also an
affine space, L(cx) is also a vector bundle, of rank equal to the rank of A5 plus the
rank of G/G®. The stacks o/1(Z) = HY(X,L(Ax)) and %1 (X) = H(X,L(cx)) are
just the spaces of sections of these vector bundles.

More precisely, Ay is a As-toric variety with weight semigroup P.(As) C
X*(Ax) = X'(Zx). If we take vy, ...,vs € X*(Zx) to be generators of P, (Ay), then
L(Ax) = @iszl L., for L, the associated line bundle to the action of Zs on C*
defined by yi. On the other hand, C[cx] is generated by the same e¥! and by
some functions b; € C[G/G®] with weight @1, so, L(cs) = L(Ax) ® @Ll(tl)*l_)@i.
Here, "L is the Age-bundle on X obtained as the image of L through the map
BZs — BAge induced by ¥ : X*(Age) — X*(Zx).

Now, a morphism X — [X/G] consists of a pair (E, ¢), where E — X is a
G%-bundle and ¢ € H(X, E(X)) is a section of the associated bundle E(X) defined
by the action of G® on Z. Such a pair is called a mutiplicative £-Higgs pair.

Now the sequence #1(X) — B1(X) — A1(X) defining the multiplicative
Hitchin map can be explicitly described as

(E, @) = (b(@), az (@) — as(@),
for b(@) = (b1(e),..., bi(p)).

Multiplicative (G, ©)-Higgs bundles

Let now G be any reductive algebraic group over C and 6 € Auty(G) an involution.
As above, we let X be a smooth complex projective curve. We can now define
multiplicative Higgs bundles associated to the reductive group with involution
(G, 0) in a very similar way as how we defined multiplicative G-Higgs bundles in
Section 2.1. We reuse our notations from there.

Definition 2.2.2. Let D € Xq. A multiplicative (G, 0)-Higgs bundle with singularities
in Disapair (E, @), where E — Xisa G°-bundleand ¢ is a section of the associated
bundle of symmetric varieties E(G/G®) defined over X \ |D|.

We denote by #4(G, 0) the moduli stack of tuples (D, E, ¢) with D € X4 and
(E, @) a multiplicative (G, 0)-Higgs bundle with singularities in D.

Remark 2.2.3. To any tuple (D, E, ¢) € #a(G,0) and any point x € |D| we can
associate an invariant invy(¢) € X.(Age)-, for A C G a maximal 0-split torus
and a fixed choice of anti-dominant Weyl chamber, in the same way as we did
for multiplicative Higgs bundles. We construct this by fixing a trivialization of
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E around the formal disc Spec(O«) and restricting ¢ to Spec(Fx). This gives an
element of (G/G®)(F) well defined up to the action of G(O) given by the choice of
trivialization. Thus we obtain a well defined element
invy () € (G/G®)(F)/G(0) = X(Age)-.
Globally, if D = )} cx nxX, we get a X.(Age)--valued divisor
inv(e) = Z My invy (@)x.
xeX
As we did for multiplicative G-Higgs bundles, we can prescribe the value of
the invariant inv(¢g) in order to obtain a finite-type moduli stack. We define
Man(G,0)={(D,E, @) € Ma(G,0):inv(p) =A-D},

where A = (Aq,...,An) is a tuple of anti-dominant cocharacters A; € X.(Age)-
and A - D = 3", A{D;. For any element (D, E, @) in #a,(G, 6), we say that the
pair (E, @) is a multiplicative (G, 0)-Higgs bundle with singularity type (D, A). The
order on X.(Ag,)- induces an order on X.(A g, )--valued divisors and thus we can
also define the bigger stack

My 5(G,0)={(D,E, ) € #a(G,0):inv(p) <A-Dj}.

Suppose now that C[G/G®]S” is a polynomial algebra and thus it is generated
by some functions by, ..., by with weights @1, ..., @ respectively, for @1, ..., @
the fundamental dominant weights of the restricted root system ®g. We can
consider the bundle B4 (G,0) — Xgq whose fibre over D is the space of sections

L
Ba(G,0)p = @ HY (X, Ox({@1, woA - D))).
i=1
Definition 2.2.4. The Hitchin map for multiplicative (G, 0)-Higgs bundles is the
morphism
han 1 Maxr(G,0) — Baa(G,0)
(D/ E, (P) — (b].((‘p)l <o ,bl((P))

As with multiplicative G-Higgs bundles we can also consider the simpler case
where the d; are equal to 1 and thus we have that D = x = (x1,...,%n). We define

Mx (G, 0) := M5 (G, 0)x = {(E, 9) € #;(G,6) : inv(p) = A-x},
and the bigger stack
My 5(G,0) := M 5(G,8)x = {(E, @) € #;(G,0) : inv(p) < A-x}.

When C[G/G?] is polynomial, we can also consider the Hitchin base

1
Bx (G, 0) = B ,(G,0)x = () H(X, Ox((@1, woA - X)),
i=1
and the Hitchin map
hxa: ﬂx/)\(G, 0) — 93)(,7\(6; 0)
(E, @) — (b1(e), ..., bi(@)).
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Relating the two pictures

In the same way as we recovered the multiplicative Hitchin map as a pullback of
the Hitchin map for monoids, we can recover the Hitchin map for multiplicative
(G, 0)-Higgs bundles from the Hitchin map for symmetric embeddings. We do
this in the case that G is semisimple simply-connected and in the more general

case in which G is semisimple, not necessarily simply-connected, and C[G/G 0)G°
is a polynomial algebra.

Let us suppose that G is simply-connected. Let A = (A1,...,An) be a tuple of
anti-dominant cocharacters A; € X.(Age)-. The natural projection Age — Ag,
induces a projection X.(Age)- — X.(Ag,)- and thus A defines a multiplicative
map

A (C)" — Acy
(le- . ‘IZTI) — Zi\l . 'Z‘i\Ln
which extends toa map A : A™ — Agny(g/ge) since P+(Env(G/GP))" = X.(Ag,)--

This allows us to define a very flat symmetric embedding * with semisimple
part OF, = G/G 9 as the pullback

A — % Env(G/G?)

\L \L"‘Env(G/GG)

A" m AEnv(G/Ge)'

Since for any symmetric embedding Ay and Z5 differ by a finite subgroup, by con-
struction we get Zsx = (C*)™ and Azr = A™, so Bunz , (X) = Pic(X)™ and for any
L € Pic(X)™ the fibre of &/(Z}) — Bunz_, (X) over L is Ay (ZP) = @?:1 HO(X, Ly).
Replacing Env(G/G?) by Env’(G/G®) we obtain an open dense subvariety £ c
I*, and we can also consider the open substack .#(Z*?) of .4 (Z*) of maps from
X to [MM/(G® x Z5)].

We provide now the following generalization of Theorem 2.1.9.

Theorem 2.2.5. The map

Xq — d(ZP)
D+— (@X(D)/ S)

induces the following diagram, where all squares are Cartesian,

haa
Man(G,0) — My5(G,0) —= Baa(G,0) —— Xa

l l | l

M(EMN) — (2N — Dy B(IN) —— A(2N).
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Proof. From the above disussions it is clear that for any D € Xq we can identify
the fibre By, (p)(Z*) with the space of sections of the bundle

L 1
0x(D) @ EP(0x(D) Xwor €, = Ox(D) @ EP) Ox((@1, woA - D)).
i=1 i=1

It is now clear that the rightmost square is Cartesian.

Take any point x € |D| and take A the coefficient of the divisor A - D cor-
responding to x. This Ay is an anti-dominant cocharacter that can be written
as

Ay = My - A,

where my = (Miy, ..., Mny) is a vector with components miy for D; = 3}, mixx.
Now, by mapping z > z™x = (z™1x, ..., z™) we obtainamorphismm : O — A"
and the following diagram, with all squares Cartesian

Env™(G/GP) 1A > Env(G/GP)

\L \L l/(xEnv(G /G9)

—Wi

SpecO m > A™ 0)> AEnV(G/Ge)'

Now, if we restrict an element (E, @) € .#(Z") to Spec(Fx) we obtain an element of
(G/G®),(Fyx) which must lie in Env**(G/G?). Therefore, by Proposition 1.7.7, the
image of @|spec(F,) belongs to G(Ox)z* and thus invy (@) < A,. Moreover, if we
change Env(G/G®) by Env’(G/G®)in the diagram above, the element @|spec(r,) lies
in Env™?(G/G?) and therefore its image belongs to G(Ox)z*, soinvy (@) = Ax. O

Let us now treat the case where G is a semisimple group which is not simply-
connected. Let 7w : G — G be the simply-connected cover. This map is a central
isogeny and thus its kernel is a subgroup of the centre 711(G) C Zg4, the fundamen-
tal group of G. Moreover, it is a well known result of Steinberg [ , Theorem
9.16] that any involution 6 € Auty(G) lifts to an involution 8 € Auty(G) making
the following diagram commute

0

CD?C)
m%ﬁ'}

Uy

The following is also well-known.
Lemma 2.2.6. 7(G%) = Gg.
Proof. The inclusion ﬂ(éé) C Gg is clear. Indeed, for any g € GO, we have
0(n(g)) = m(6(9)) = 7(g),

so(G?) ¢ G? and the inclusion follows since 7ris continuous and G® is connected.
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For the other inclusion, take k € G 8 and g € G with 71(g) = k. Now,

m(g8(g)™) = k8(K) ™' =

Thus g0(g)! € m(G) c Zs,50 g € G Recall now the decomposmon Gy =

Fa G®, which implies that there exists some f € F4 and some gy € G % such that
g= fgo Let kg = 7(go) € Ge Clearly, 7t(f) € F?, so we obtain a decomposition

k = 7i(f)ko,

with k, kg € GS’ and 7i(f) € FO. This implies that 7(f) = 1, and thus k = ko = 7(go),
and k € ni(G9). O

It follows from the lemma above that we can define an action of G g on G/ GO
from the left multiplication action of G°. Indeed, for any k € G g we just have to
take any h € G® with 7t(h) = k and define k - (gG®) = hgG®. This is well defined
since, if h’ is such that 7(h’) = k, then h’/ = zh for some z € G® N Zg and thus
h’'gG® = hgG°.

For the following, we need to introduce a new object.

Definition 2.2.7. A multiplicative (G, 0)o-Higgs bundle is a pair (E, ¢), where E — X
isaG g—bundle and ¢ is a section of the associated bundle of symmetric varieties

E(G/G?) defined over X’ the complement of a finite subset of X.

The exact sequence 1 — m1(G) — G — G — 1, induces a fibration T —
G/G® » G/G?Y, for some finite group T". For any Gg-bundle, we can consider the
bundles E(G/G®) and E(G/GP?), associated to the actions of Gg and we obtain a

exact sequence of sets with a distinguished element (where H? stands for sets of
sections)

HOX, E(G/G®)) —— HOX', E(G/G®)) —> HI(X,T).

It follows that to any multiplicative (G, 8)o-Higgs bundle (E, ¢) we can associate
the invariant §(¢) € H'(X’, T'). Now, the section ¢ comes from a section of E(G/G?)

if and only if 6(¢) = 1. Moreover, the map 7t : GO — Gg induces a map Bungy —
Bunge. We conclude the following.

Proposition 2.2.8. Any multiplicative (G, 8)o-Higgs bundle with &(¢) = 1 is induced
from amultiplicative (G, 8)-Higgs bundle from the maps Bungs — Bunge and G/G® —
G/G°.

The next step is relating multiplicative (G, 8)o-Higgs bundles with multiplica-
tive (G, 0)-Higgs bundles. We start by considering a (G, 6)-Higgs bundle (E, ¢).
The decomposition G® = FOG g allows us to define an isomorphism G® = FO = G g,

and this induces a factorization of the G°-bundle E — X as
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E

™~

Y =E/G]

e

X.

Here, Y — X is a Galois étale cover with Galois group equal to F®, while E — Y
has the structure of a principal Gg -bundle. Moreover, the deck transformation
Y — Y induced by an element a € F° lifts to a map @ : E — E and thus defines
a right FO-action on the Gg -bundle E — Y, which clearly gives an Int-twisted

FY-equivariant structure on it. By this we mean that, for any e € E, a € F® and
g € GY, we have
d(e)- g = d(e- aga™).

A similar argument allows us to see the bundle E(G/G®) — X as a F®-equivariant
bundle on Y, and also there is a bijective correspondence between sections of
E(G/G?) — X and F®-equivariant sections of E(G/G®) — Y. We refer the reader
to [ ] for more details on these correspondences. We have proved the
following.

Proposition 2.2.9. Any multiplicative (G, 0)-Higgs bundle is induced from a multiplica-
tive (G, 0)o-Higgs bundle on a certain FO-Galois cover Y — X.

The moduli space

A moduli space of multiplicative (G, 6)-Higgs bundles can be realized inside
the moduli space of G-Higgs bundles by extending the structure group. More
precisely, there is a natural map

Ma(G,0) — Ma(G)
(D,E, ¢) — (D, E, 0)

sending a multiplicative (G, 0)-Higgs bundle (E, ¢) to the multiplicative G-Higgs
bundle (Eg, ¢ g), where
Eg=E Xge G

is the natural extension of the structure group of E from G° to G and, regarding
¢ as a GY-equivariant map f : Elx\jp| — MO, the section ¢ ¢ is determined by the
map
fe : Eglx\jpj — G
[e, g] — gf(e)g™".

Here, as in Section 1.2, we are identifying the symmetric variety G/G® with the
subvariety M® = 1%(G) so that for any g € G?, the image gf(e)g™" stays in M°.
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Recall that for any involution 6 € Auty(G) there is a natural inclusion of
cocharacters X.(Age) C X.(T), for A € G a maximal 0-split torus and T a maximal
torus containing it. Now, the map #4(G,0) — #4(G) restricts to a map

Ma(G,0) —> Mawon(G).
Indeed, we have the following lemma.

Lemma 2.2.10. Forany multiplicative (G, ©)-Higgs bundle (E, ) and any singular point
x of it, we have invy (@ g) = wo inv«(@).
Proof. The decomposition (G/G®)(F) = L Inex.( Age) G(0)z* can be reformulated
in terms of M® as
MO(F)= | | G(O)%e 2"
AeX(Age)-

Now, the inclusion M® ¢ G induces an inclusion M®(F) ¢ G(F) and it is clear that
each orbit G(0) #g z* is mapped inside the orbit G(9)z*G(0) = G(0)z"*G(0). O

We can then define a moduli space Mp A(G, 6) for multiplicative (G, 0)-Higgs
bundles with singularities in D as the intersection of the moduli space of simple
pairs Mp A(G) with the image of the map Mg A(G,0)p = Maa(G)p.

2.3 INVOLUTIONS AND FIXED POINTS, I

Involutions on the moduli space

Let G be a reductive algebraic group over C and 6 € Auty(G) an involution. Let
X be a smooth complex projective curve. To any multiplicative G-Higgs bundle
(E, @) over X we can associate other two multiplicative G-Higgs bundles obtained
from (E, @) and the action of the involution 8. These are the pairs

(E, @) = (6(E), 0(¢)*h).

Here, 6(E) stands for the associated principal bundle E Xg G or, equivalently, it
has the same total space as E but it is equipped with the G-action e -g g = e- 6(g).
The section 8(¢) is obtained as the composition of ¢ with the natural map

E(G) — 6(E)(G)
le, g] — [e, 08(9)].

Equivalently, if we regard ¢ as an automorphism ¢ : E|x» — E[x’, then 8(¢p) is
set theoretically the same map as ¢, but now regarded as an automorphism of
0(E)|x’. We can give one last interpretation of 6(¢) by noting that the associated
G-equivariant maps f, fg(e) : E[x» — G are related by

fo(p) =00 fo.

Let T C G be a 0-stable maximal torus and B C G a Borel subgroup contained
in a minimal 0-split parabolic and containing T. Given any dominant cocharacter
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A € X.(T)4, the associated cocharacter 6(A) is not dominant in general, but there
is a dominant cocharacter in its orbit under the action of the Weyl group Wt. We
denote this element by 6(A),. The map A — 6(A),. defines an involution on X.(T)..
One checks immediately that, if x is a singular point of (E, @), then

invx(B(E), 0(9)*) = (0(invx(E, 9)))+-

Therefore, if A = (A1, ..., An) is a tuple of dominant coweights A; € X.(T) with
O(Ai)+ = £Ay, then for any D € Xq4, we have the following involutions on the
moduli space of simple pairs

1y : MpA(G) — Mpa(G)
[E, @] —> [6(E), 0(¢)*"],

where 19 is well defined if 8(A;); = A; and (® if (-0(A;)); = A;. We will denote
these two involutions together by writing 19, for e = +1.

Moreover, note that the actions of the inner automorphisms on the moduli
space is trivial since, if & = Intg is an inner automorphism of G, then the map
e — e- g~! gives an isomorphism between any principal G-bundle E and E X G,
commuting with any ¢. Therefore, the above involutions are well defined at the
level of the outer class a of 8 in Outy(G). That is, given any element a € Outy(G),

we can define
te : Mpa(G) — Mp(G)
[E, @] — [6(E), 6(¢)%],
for any representative 6 of the class a.

Remark 2.3.1. Note that it follows from the Cartan decomposition of the formal

loop group G(F) thatif 6 and 0’ are two involutions representing the same element
in Outy(G), then O(A); = 0'(A);.

We are interested in studying the spaces Mp A(G)‘¢ of fixed points under
these involutions. For this it will be useful for us to think about an isomorphism
between the G-bundles E and 0(E), for 6 € Autx(G), as a 0-twisted automorphism.
By this we mean an automorphism { : E — E of the total space E, such that

P(e-g) =U(e)-0(g).

Therefore, a multiplicative G-Higgs bundle (E, ¢) will be a fixed point of the
involution 1¢ if and only if there exists a 0-twisted automorphism 1y : E — E, for
any element 6 of the class a € Out,(G), such that the following diagram commutes

W
Elxx — Elx

lo Lo

P
Elx» — E[x.

Equivalently, if we define fy, : E — G as (e) = e fy(e), then (E, ¢) € Mp A(G)'<
if and only if, for any e € E, we have

fip(€)8(fo(e))fy(e)™ = fo(e)®.
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Fixed dominant cocharacters

Before describing the fixed points of the involution (9, it is important that we give
a good description of the involution at the level of dominant cocharacters

X (T)y — Xu(T)s
A= (=6(A))+,

for T a 0-stable maximal torus.

As we mentioned above, in general —0(A) is not a dominant cocharacter, and
that is why we need to take (—8())); the dominant cocharacter in its Weyl group
orbit. However, there is an exception to this, which is when there are no imaginary
roots.

Indeed, the dominant Weyl chamber in X.(T)+ ®z R is spanned by a basis of
fundamental coweights {py, ..., ir}, which is the dual basis of the set of simple
roots Ay = {01, ..., % }. Since 0 is an involution, we have (x®,0(\)) = (x,A) for
any x € X*(T) and any A € X.(T). Therefore, {0(n1),...,0(uy)} is the dual basis
of {oc%3 P ocf}. Recall now that there is an involution o on the set of simple
roots which are not imaginary such that af + x4 is an imaginary root. Thus, if
there are no imaginary roots, we conclude that ocie = —&g(i) and O(Ki) = —Ug(i)-
Summing up, we have the following.

Lemma 2.3.2. If ®¢ = @, then for any dominant cocharacter A € X.(T)., the cocharacter
—0(A) is also dominant, and thus (—0(A))+ = —0(A).

Recall from Proposition 1.3.7 that for any involution 6 € Auty(G) there exists an
inner automorphism ug € Int(G) such that the involution 84 := ug 00 is quasisplit.
Therefore, if we let T4 be a maximal 0 4-stable torus, the involution A = (—=04(A))+
is just the involution A + —04(A). The fixed points of this involution are simply
the dominant cocharacters X.(A q)+, where A 4 is the maximal 6-split torus formed
by the anti-fixed points of 04 in T.

The fixed points of the involution A = —6(A) in X.(T) are the cocharacters X.(A)
of the maximal 0-split torus A of anti-fixed points of 0 in T. Any two maximal tori
are conjugate and thus there is a canonical bijection X.(T); — X.(Tq)+. It follows
from the above that under this bijection the dominant cocharacters X.(A), are
mapped inside X.(A )+, but in general not every element of X.(A4)+ comes from
an element of X.(A)+. In fact, the image of X.(A); under this map is the set

XAy = {A € Xu(Ag)+ : up(N) = A}.

Given an element a € Outy(G), a quasisplit representative 04 of a and a
dominant cocharacter A € X.(Aq)+, we can consider the set

a) = {6 representative of a : ug(A) = ?\} .

That is, the elements of a, are the involutions 0 for which A is in the image of
the cocharacters of a maximal 0-split torus. This set clearly descends to the clique

cl™}(a) and we can define

(@) = {[0] € I (a) s up(A) = A}.



2.3. INVOLUTIONS AND FIXED POINTS, I 113

The fixed points

We move on now to describe the fixed points of the involutions (&, for a € Outy(G).
A first result is clear.

Proposition 2.3.3. Let 0 € Auty(G) be a representative of a, T C G a maximal ©-stable
torusand B C G a Borel subgroup contained in a minimal 0-split parabolic and containing
T. Let A be a tuple of dominant cocharacters of T.

1. Ifthe A € X.(T9), the subspace Mp A(G®) € Mp A(G), defined as the intersection
of Mp A(G) with the image of the moduli stack of multiplicative G®-bundles of
type (D, A) under extension of the structure group, is contained in the fixed point
subspace Mp A(G)‘*.

2. Any extension (Eg, @) of a pair (E, @) where E is a G®-bundle and o is a section
of Elx\p|(S®), for the conjugation action of G® on S, is a fixed point of 1. In
particular, if X = (=0(A))+, Mp A(G, 0) C MD,;\(G)‘E.

Proof. Notice first that if Eg = E Xgo G is the extension of a G® bundle E, then the
map P : Eg — Eg defined as Y(e) = e for e € E and P(e - g) = e - 0(g) is clearly
a well-defined 0-twisted automorphism of Eg. Now, if for every e € E we have
B(fp(e)) = fe(e)€, then

fps(e-9) = g ' fo(e)g = g7'0(fe(e))g
= g7'0(g)8(fe(e- 9)0(g) "9
= fy(e- 9)8(fp(e- g)fyle-g) ™"
And thus (Eg, ¢g) is a fixed point of (2. O

The main step towards the description of the fixed points is provided by the
following theorem.

Theorem 2.3.4. If (E, @) is a simple multiplicative G-Higgs bundle with (E, @) =
L3(E, @), then:

1. There exists a unique [0] € 1Y (a) such that there is a reduction of structure group
of E toa G®-bundle Eg C E.

2. If we consider the corresponding G-equivariant map f, : E|lx» — G, then f|go
takes values into G® if e =1, and S°® if e = —1.

More precisely, when € = =1, f,|g, takes values in a single orbit M® c S, for some
s € SO unique up to 0-twisted conjugation.

Remark 2.3.5. The statement (1) of the above theorem regarding the reduction of
the structure group of E was proven in [ , Proposition 3.9].

Proof. Let 6y € Auty(G) be any representative of the class a. By hypothesis, there
exists some 0p-twisted automorphism 1 : E — E making the following diagram
commute
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v
Elxx — Elx

e
Elx: — Elx.

Here, X’ = X'\ |D| denotes the complement of the singularity divisor of ¢. Now,
independently of the value of €, we have that the following diagram commutes

and P?(e-g) = Ww(W(e)-0p(g)) = W?(e)- g, so P? is an automorphism of (E, ¢). Since
by assumption (E, @) is simple, there exists some z € Zg such that?(e) = e - z for
every e € E. Therefore,

e-z=1%(e) = (e fy(e)) = b(e) - Bo(fy(e)) = e [fy(e)Bo(fy(e))].

We conclude that f,, maps E into Sg,.

Note that fy, is G-equivariant for the 0y-twisted conjugation action. Therefore,
it descends to a morphism X = E/G — S¢,/(GX Zg) = cl™Y(a). Now, since cl™}(a)
is finite and X is irreducible, this maps X to a single element [0] = cl™Y(a). Let us
take r € Sg, a representative of the class corresponding to [0]. In other words, we
take r such that 6 = Int,. 00y.

Let us consider the subset Eg = f:pl (r) C E. If e € Ep, then another element
e - g in the same fibre of E belongs to Eg if and only if

r="fyle-g)=g " e, fy(e) = g 'm00(g).

Thus, e - g € Eg if and only if g = Int, 00y(g) = 6(g). Thatis,if g € GO. Therefore,
Eg defines a principal G®-bundle to which E reduces. This proves (1).

As we explained above, if {) determines the isomorphism between (E, ¢) and
(60(E), Bo(@)€), then for every e € E we must have

fy(e)00(fe(€))fy(e)™ = fo(e)C.

Thus, ife € Eg = f:bl(r), we have

0(fe(e)) = 100(fe(e))r™! = fy(e)0o(fe(e))fy(e) ™! = fo(e)S,

proving (2).

Suppose now that € = —1. In that case we have a map f,|g, : Eolx — S°.
Since this map is G%-equivariant, we can quotient by G® and obtain a map from
X' = Eg|x//G® to the quotient of S® by the conjugation action of G®. We can
further quotient S® by the 0-twisted conjugation action and obtain a well defined
map X’ — SY/G. Again, since X’ is irreducible and S°/G is finite, we conclude
that f, maps Eg|x to a single 0-twisted orbit M?, for some element s € S°. O
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Remark 2.3.6. Notice that if there exists some e € E such that f(e) is semisimple
or unipotent, then 0 can be chosen so that f,|g, takes values in the symmetric
variety MP. Indeed, in that case we can choose 1 to be r = fy(e), so that e € Eg,
for © = Int, 00p. We know from the above that s = f,(e) € S° and that f, maps
Eo|x’ to the 0-twisted orbit M. However, if s is semisimple or unipotent, we have
by Richardson [ , Lemmas 6.1-6.3] that in fact s € M® and thus M? = M°.

When 0 and 0’ = Intg 00 o Int;1 are two involutions of G related by the equiva-

lence relation ~, we have MD,A(GG) = MD,;\(GG') and Mp A(G,0) = Mp A(G, 0).
Therefore, the above theorem allows us to decompose MDJ\(G)L$ in the compo-
nents Mp (G?), for 0 the elements of the clique cI™*(a). That is, we get

MpA(G)'e = U Mp A(G®).
[0]ec ™ (a)

The situation for e = —1 is a little bit more involved, as we explain now.

Definition 2.3.7. Let (G, 6, s) be a triple consisting of a reductive group G, an
involution 0 € Auty(G) and an element s € S°®. A multiplicative (G, 0, s)-Higgs pair
(E, @) on X is a pair consisting of a principal G®-bundle E — X, and a section ¢ of
the bundle E(M?) associated to the conjugation action of G on M?, and defined
over the complement X’ of a finite subset of X.

Remark 2.3.8. Note that this is a new kind of object, different from the others
defined in this paper. Indeed these are not multiplicative (G, 0)-Higgs bundles
since the bundle E is a G?-bundle but the variety M?, although it is a symmetric
variety, is equal to M® = M%s = G/GP, so its stabilizer is not equal to G°.

To a multiplicative (G, 6, s)-Higgs pair we can associate an invariant inv(¢),
which is a divisor with values in the quotient M?(F)/G(9). Now, since M? =
MP9ss, this quotient can in fact be identified with the semigroup X.(Ages)-, and
the invariant inv(¢) is a X.(A ges )--valued divisor. Here, A is a maximal 6,-split
torus.

We denote by #4,A(G, 0, s)p the moduli stack of multiplicative (G, 6, s)-Higgs
pairs with singularity type (D, A), for D € Xq, where A is a tuple of anti-dominant
cocharacters in X.(Ages)-. As in the case of multiplicative (G, 8)-Higgs bundles,
there is a natural map

Mar(G,0,s) D — Mawoa(G)D.

We denote by Mp A(G,0,s) C Mp ,a(G) the intersection of the image of this
map with Mp ,y,A(G).

In this language, we can write the consequences of the results of this section
as follows.

Corollary 2.3.9. Let 0 be the quasisplit involution representing the class a € Outy(G)
and let A be a tuple of anti-dominant cocharacters A; € X.(Ageq)+, for A a maximal
04-split torus. Then,

Mpuwn(@)e= | ] | ) Mba@Go,s).

[B]ecl ™ (a) [s]€(S®/G)a
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Here, (S®/G)a denotes the set
(S9/G)a = {[s] € S°/G :ue,(A) = A},
where 05 = Ints 00 and ug is the inner automorphism such that 04 = ug, o 0s.

Proof. Indeed, note that A can only be a valid invariant for a multiplicative (G, 6, s)-
Higgs pair if and only if the A; are in the image of X.(A,,,), for A® a maximal
0s-split torus, thus, if and only if 65 € a), foreveryi=1,...,n. O

The Hurtubise-Markman symplectic structure and involutions

We recall from the description of the deformation theory of simple multiplicative
Higgs bundles that we explained in Section 2.1 that the tangent space to the mod-
uli space Mp A(G) at a point [E, @] is isomorphic to the first hypercohomology
H'(C[g,)) of a certaing deformation complex. Moreover, by taking an acyclic
analytic cover of X, that we denote by {ll;};, we have a precise description of this
hypercohomology space as parametrizing some equivalence classes of pairs (s, t),
with s = (Sij)i,j/ t = (ty);, with the Sij € r(u; N U, E(g)) and t; € I'(Uy, ad(E, @)),
satisfying some relations. The corresponding deformation over X x Spec(C[¢]) is

determined as
g% = g(1+35s),
¢t = (1 +5t),

where g is determined by the transition functions of E and ¢ by the restrictions
of .

This explicit description of the tangent space allows us to compute the differ-
ential of the involution . Indeed, (1£).(s, t) is such that

2(9°, ") = (0(9) ), (8()) V)

Now,
L2(9%, d*) = (8(g)(1 + 86(s)), B(ch) (1 + 56(t)€) = (6(9)°™, (B())<°™),
where, for the last equality, we have used that, in C[¢],
(1+ad)® =1+ eabd.

We conclude that
(1e):(s, ) = (6(s), €b(t)).
From here we can observe the behaviour of the involutions ¢ with respect

to the Hurtubise-Markman symplectic structure, when we assume that X is an
elliptic curve.

Theorem 2.3.10. Suppose that X has genus 1 and let Q) denote the symplectic structure
on Mp A(G). Then,
(13)'Q =eQ.

Therefore, Mp A(G)“* is an algebraic symplectic submanifold, while Mp A(G)** is an
algebraic Lagrangian submanifold of Mp A(G).
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Proof. Recall our description of the symplectic form
Q((s, 1), (s", 1)) = (s, ¥(t')) = (¥(s), 1),

where V¥ is a certain isomorphism between the deformation complex and its dual
that we defined in Section 2.1. Then, we have

(1) Q((s, 1), (s, 1)) = Q((6(s), €6(1)), (6(s"), €B(1")))
= (8(s), eWO(B(1))) — (WO(8(s")), eb(t))
= (6(s), eB(¥(t))) — (B(¥(s")), €B(t))
= e[(s, ¥(t')) - (¥(s), )]
= eQ((s, 1), (s', 1)),

since the bilinear form is invariant under automorphisms of g. O






MONOPOLES AND INVOLUTIONS

3.1 MINI-HOLOMORPHIC BUNDLES

The mini-complex structure

Consider the space R x C with natural coordinates (t, z), with z = x + iy.

Definition 3.1.1. Let U C R X C be an open subset. A function U — C is mini-
holomorphic if

0¢f=0, and
aif =0.

An orientation-preserving diffeomorphism F : U — U is mini-holomorphic if for
every mini-holomorphic function f : U — C, the composition f o F is mini-
holomorphic.

The natural projection (t, z) = zisnaturally a mini-holomorphic function from
R x C to C. More generally, mini-holomorphic functions f(t,z) = (t'(t, z), Z'(t, z))
from R X C to C are characterized by the conditions 0¢t" > 0, 01z’ = 0and 9;z" = 0.

Let now X be a Riemann surface and S! the unit circle, and put Y = S! X X. The
holomorphic structure on X and a choice of orientation on S! determine a mini-
complex structure on Y. By this we mean that if we fix a local coordinate t on S and
a holomorphic coordinate z on X, and different coordinates t’ on S! and z’ on X
with 9¢t” > 0, then the change of coordinates (t, z) = (t’, z’) is mini-holomorphic.

There are natural decompositions in the tangent bundle and in the space of
1-forms

TY =R, 3 ® pry TX and Q!(Y) = C®(Y)dt & pry Q'(X).

Moreover, the complex structure on X induces decompositions into (1, 0) and (0, 1)
parts TX®r C = T''X @ T%'X and Q!(X, C) = Q0(X) ® Q%1(X), so we can write

TY ®r C = C, 0 ® pry T"X & pry T!1X

and
Ql (Y/ C) = COO(Y, C)dt &) pr;( QLO(X) o) pr’;( QU,l (X)

119
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Let us put

TV =€, d¢ @ pry T'X and Q'Y0(Y) = C*(Y, C)dt @ pry Q0(X),
and

TOY = €, 0 @ pry T"'X and Q%(Y) = C®(Y, C)dt @ pry Q" (X).

We can also extend this definition to define the exterior powers Q™0(Y) and Q%(Y).
This allows us to define the operators

dy : C2(Y,C) — Q%(Y)
f— 0F + 0xf,

and

dy : C2(Y,C) — Q(Y)
f+— 0¢f + 0x f,

where dx and 0x are the 9 and 9 operators on X. These ooperator can also
be extended naturally to the higher exterior powers dy : QYY) — QW10(Y)
and oy : Q%(Y) —» Q%L(Y). Moreover, dimensional restrictions imply that

0} = 5%( = 0. A function f € C*®(Y, C) is mini-holomorphic if dy f = 0.

Mini-holomorphic principal bundles

Let G be a complex reductive group and let p: E — Y be a smooth principal G-
bundle. Let Vg = ker dp C TE denote the vertical distribution, which is naturally
isomorphic as a bundle over E to the trivial g-bundle [E X g. There is a natural
short exact sequence of bundles over E

0 — Vg — TE -3 p*TY — 0.

We recall that, by definition, a G-connection D on E is a splitting of the
above exact sequence of bundles over E which is G-invariant. That is, the G-
connection D determines a horitonzal lift Hp : p*TY — TE whose image is the
horizontal distribution, satisfying that Hp (p*TY) ® Vg = TE. The condition of being
G-invariant means that, forany e € Eand g € G,

Hp (P TY)e.g = (Rg)-Hp (P TY)e,

where Ry : E — E denotes the right multiplication by g. Equivalently, the
distribution Hp (p*TY) can be defined as the kernel of a projection Vp : TE — V.
Since VE is isomorphic to E X g, the projection Vp can be regarded as a 1-form
wp € QYE, g), called the connection 1-form of D. The horizontal distribution is
then ker wp. This 1-form is G-equivariant in the sense that Rywp = adg_1 o wp);
which follows from the horizontal distribution being G-invariant.
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The curvature Fp of D measures the failure of integrability of the horizontal
distribution Hp (p*TY) and is the g-valued 2-form defined as

Fo = hwp € Q%(E, q),

where h: TE — Hp(p*TY) is the natural projection to the horizontal distribution.
Indeed, one can show that, for £,1 € TE,

Fp(&,m) = —wp([h(E), h(n)]).

Let dp~{(T%!Y) c TE ®g C denote the inverse image of the (0, 1) distribution
in Y. The above exact sequence induces a short exact sequence

0 — VE®r C —3 dp1(TOly) —225 p 01y s .

Definition 3.1.2. A mini-holomorphic structure D% on E is a G-invariant splitting
of the above exact sequence, such that the resulting distribution Hpo1 (p*T1Y)
dp~1(T%1Y) is integrable. A pair & = (E, D%!) formed by a principal G-bundle E
endowed with a mini-holomorphic structure is called a mini-holomorphic (principal)
G-bundle.

Equivalently, a mini-holomorphic structure is determined by a form wpo: :
dp~(TO1Y) — g, whose kernel is the distribution Hpo1(p*T%1Y).

Clearly, if D is a connection on [E, we can restrict the horizontal lift Hp :
PTY®C — TE ® C to p*T%'Y and thus obtain a horizontal lift Hp : p*T%'Y —
dp~L(p*TOLY). Equivalently, we can define this horizontal lift by restricting the
connection 1-form wp to dp ! (p*T%1Y). The integrability condition now amounts
to the vanishing of the 2-form

F% .= Fp|
D = 'Dldp i(p*TolY)xdp~1(p*TOY)-

Associated bundles and covariant derivatives

A local description of the objects just considered in terms of covariant derivatives
helps to clarify the picture. Pulling back by a local section s : U — [E, for
U C Y a sufficiently small open subset, a connection 1-form wp yields a 1-
form A = s*wp € Ql(u, g). We can also pull back the curvature to obtain
F4 = s'Fp € Q?%(U, g), which can be shown to be equal to

Fgp=dA+AANA.

(Recall that the wedge product on g valued forms involves taking the wedge
product on the form part and the Lie bracket on the Lie algebra part). If p :
G — GL(V) is a representation of G, then we can consider the covariant derivative,
defined locally as

da: Q°(U,E x, V) — OYU,Ex, V)
v dv + p(A)v.
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This satisfies the Leibniz rule: forany f € C°°(Ll), da(fv) = (df)v.+ fd4v. Moreover,
it can be extended to higher exterior powers Q'(U, Ex, V) — Q"(U, EX, V), and
the obstruction for this extension to define a complex is precisely the curvature;
indeed

(da o da)v) = p(Fa)v.

Now, if D% is a mini-holomorphic structure, we can locally pull back the
1-form wpo1 to obtain a 1-form A% € Q% (U, g) and, for any representation
p: G — GL(V) define

dpor : QU E x, V) — QY (U, E x, V)

vi— v+ p(A%)v.

This also satisfies a Leibniz rule: forany f € C*(U, C), dpo1(fv) = (dy f)v+f dpos v.
Moreover, it can also be extended to higher exterior powers and the integrability
condition of the distribution defined by D%! implies that 001 © dpo1 = 0. We con-
clude that a mini-holomorphic structure D%! induces in every associated bundle
a mini-holomorphic structure in the sense of Mochizuki [ ].

Note that if A € Q1(U, g) is the 1-form defined by a connection on E, the (0, 1)-
part of this form A%! € Q%(U, g) is the form defined by the mini-holomorphic
structure induced by the connection, provided that the (0, 2)-part F?L{Z e 0%2(U, g)
of F4 vanishes.

We can do this even more explicit if we decompose

1,0 0,1
A=A+ AU + A,
for Ax € pr QY(X,g) and A € QO(Y, g), and
da = 04x +04x +04t,

for 04 x = 0x + p(A;’O), d4x = 0x +p(A(>)<’1) and 0,4 ¢ = 0t + Adt. The curvature
now is equal to

Fa=daoda=[04x,04ax]+[04ax,04]+[04x,04¢]

Where we note that the squares of the components of d 4 vanish by the dimensional
restrictions on both X and S!. We denote the first component of the curvature as
Fax = [04,x,04,x] and thus we put

Fa=Fax+[04x,04t]+[04ax, 04l

The (0, 2)-part of this form is ngz = [04x,0.4.t]-

We conclude that if € is a mini-holomorphic bundle determining an operator d¢
that, as above, we decompose as d¢ = ¢ x +0¢ 1, then the integrability condition
can be put as

[68,X/ ag,t] = O
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The Chern pair

Let K ¢ G be a maximal compact subgroup of G. Let h: E — G/K be a G-
equivariant map, which gives a reduction of the structure group of E from G to
K (we call this a K-reduction on E). Indeed, just take E;, = h™}(K) c E, which is
naturally a principal K-bundle.

Consider V a K-connection on Ey,, which is determined by a horizontal lift
Hy : p*TY — TEy. The connection V can be extended naturally to a G-connection
on [E, which we also denote by V, by putting, for e € Ey,, and g € G,

Hy(p™TY)e.g = (Rg)-(L-Hy(pTY)e),

where 1 : E;, — E denotes the inclusion. The G-connections on [E that are
obtained in this way from K-connections on [Ey, are called h-connections.

Let & = (E, D) bea mini-holomorphic bundle. Consider now a G-invariant
splitting D of the exact sequence

0 — VE®r C —3 dp~ 1 (TWY) —225 p 710y 3

determined by a g-valued 1-form wpio defined on dp~}(T%1Y). We can now
reconstruct a connection V on [E by putting

Wy = Wpox + Wpo1 x + %(lerO,t + (,UDO,llt).
We can also consider a G-equivariant @ € QO(]E, g) defined as
Odt = —5(wp1oy — Wpot ).

We can write
wp = wy —i@dt = wpo x + wpoy,

which is the 1-form of a connection D with (0, 1)-part giving the mini-holomorphic
structure of €. We denote this connectionby D = V —10.

Proposition 3.1.3. There exists a unique splitting D' as above, which we denote by D%{O,
such that, if (V, @) is the pair obtained by the procedure explained above, the resulting
connection V is an h-connection and @ is obtained by extending a K-equivariant section
in Q%Ey, t). The pair (V, @) is called the Chern pair of €.

Moreover, if we consider the connection D = V —i® defined as above, then we have
P =F5 =0.

We omit the proof of this proposition in full generality here, but remark that
this is easy to see at the level of associated bundles, and thus it is true in general
by Tannakian considerations. Indeed, a K-reduction on E induces a Hermitian
metric (—, —)n, on every associated bundle [E ®, V. Now, by an analogous of the
typical argument in Hermitian geometry, there exists a unique operator

3f 1 QUY, Ex, V) — QY(Y,E x,, V)
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satisfying the Leibniz rule ag(fv) = (0yf)v + fogv and such that
Ay (W, V)n = (e, vn + (1, Ofvin.

Moreover, 6? can be extended to higher exterior powers and one can easily check
that 6? o 62 = 0. We then construct a Hermitian connection da on E X, V by
considering the operator

da = a;‘,x + 65/)( +%(a‘§’t + ag,t)
and a section @ of End(E X,, V) by putting
(D = —%(agt - ag,t).
We have ) )
aglx = aA,x and ag,t = dA,t - iq)(—)dt.

And also,
0fx =0ax and 0}, =da.+id(-)dt.

At this level, the connection D = V — 10 is given by the operator
dq =da —i0(—)dt,
whose (0, 1) part is precisely d¢. The integrability of ¢ implies that
F2 = [3a,x, da — i@(-)dt] = 0.

On the other hand, we can also consider the connection D = V + i®, given by
the operator d; = da + i®(-)dt. The (0, 1) part of this connection is 6? and the
integrability of this operator implies that

Fi{o = [0ax, dat +1i®@(-)dt] = 0.

The scattering map

Let & — Y be a mini-holomorphic G-bundle and vy : [0,1] — Y a path with
V*(a%) C RO, where s is the coordinate in [0, 1]. Consider the pull-back bundle
v*€ — [0,1]. We can also pull-back the mini-holomorphic structure of £, which
induces a connection on y*€. Taking parallel transport of this connection induces
an isomorphism
Pey €y — Evqy
called the scattering map associated to € along y.
In particular, for ty, t2 € [0,27], and for any x € X, we can consider the path

vx :[0,1] — Y = $' x X

S — (ei[t1+s(t2_t1)], X)

and the scattering map @¢,y, @ E(eitiy) = E(einy)- For any t € [0,27], we
denote by &; — X the G-bundle with fibres (E¢)x = (it y). The distribution
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Hg(p*TO'lY)l{eu}xx C TE determines a holomorphic structure on £;. We denote
the resulting holomorphic bundle by Ex — X. Putting all the v« together yields
an isomorphism

et By — By

By construction, the differential of this map preserves the holomorphic struc-
tures and therefore is holomorphic. In particular, @¢ 0.~ defines a holomorphic
automorphism of Eo.

Dirac-type singularities

Consider now an interval a disc A5 C C of radius 6 and centered at 0, and put
U=RxAsand U =U)\ {(0,0)}. Let ¢ = U be a mini-holomorphic G-bundle.
For any t € R we can take the corresponding holomorphic G-bundle Ey — U".
There is a scattering map

®e-11: B — By,
This map is holomorphic over A§ and has a singularity at 0.

Definition 3.1.4. We say that € has a Dirac-type singularity at 0 if the map @¢ 1,1
is meromorphic over As.

By taking trivializations of E_; and Ej, the scattering map is determined by
a meromorphic map As — G. Taking limit as 8 — 0 we obtain an element of
the formal loop group G(F), well defined up to the left and right multiplication
action of G(O) determined by the choice of trivializations. Thus, if we fix a Borel
subgroup B C G and a maximal torus T C B, we obtain a dominant cocharacter
A € X.(T)4+, which we call the weight of the Dirac-type singularity.

Let now X be a compact Riemann surface and put Y = S! X X. Letn € Z, and
take n pairwise different points x1,...,xn € Xand n real numbers 0 < t; < --- <
th <27 Putx = (x1,...,xn), t = (t,...,tn), yi = (e, x) € Y,y = (y1,...,yn)
and Y = Y\ {y1,...,yn}. Consider also a tuple of n dominant cocharacters
A= (A1, An), with Ay € X*(T),.

Definition 3.1.5. A singular mini-holomorphic bundle on Y of type (t,x, A) is a mini-
holomorphic bundle € over Y’ such that, for each i = 1,...,n, taking local coor-
dinates in some neighbourhood of the point y;, the resulting mini-holomorphic
bundle over U’ = (R x A;) \ {(0,0)} has a Dirac-type singularity of weight A; at 0.

Mini-holomorphic bundles and multiplicative Higgs bundles

Multiplicative Higgs bundles were defined in the previous chapter in the alge-
braic context, as objects over a smooth complex projective curve. The notion can
be immediately translated to the holomorphic context; indeed, a multiplicative
G-Higgs bundle of type (x,A) over a compact Riemann surface X is a pair (E, )
formed by a holomorphic principal G-bundle E — X and a meromorphic auto-
morphism of E, holomorphic over X \ {x1,...,xn} and such that the invariant
obtained at each x; by restricting ¢ to a formal disc around it is equal to A;. One
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is easily convinced by GAGA-style arguments that both the algebraic notion and
the holomorphic notion are in fact the same. To be more precise, we mean that
an algebraic multiplicative Higgs bundle over a smooth complex projective curve
determines a holomorphic multiplicative Higgs bundle over its analytification,
and viceversa, every holomorphic multiplicative Higgs bundle over a compact
Riemann surface arises in this way.

A singular mini-holomorphic G-bundle € on Y of type (t,x,A) determines a
multiplicative G-Higgs bundle (E, ¢) on X of type (x,A) by putting E = Ey and
taking ¢ as the scattering map @ = @¢ 02~ : Eo — B2 = Eo. Itis clear that we can
go in the other direction by using ¢ to glue pr} E — [0, 27t] X X along {0} x X" and
{27t} x X’ to obtain a mini-holomorphic bundle £ — Y’ yielding ¢ as the scattering
map. Summing up, we have the following.

Proposition 3.1.6. Forany t = (ty, ..., tn) there is an equivalence of categories between
the category of singular mini-holomorphic G-bundles on'Y = S' x X of type (t,x, A) and
the category of multiplicative G-Higgs bundles on X of type (x, N).

3.2 MONOPOLES AND THE CHS CORRESPONDENCE

The Dirac monopole

Let Tx = U(1)" be a real compact r-dimensional torus and consider a real cochar-
acter A of Tx. The real cocharacter A can be thought of as an element iA € tx of the
Lie algebra tx = iR" of T, defining a map U(1) — Tk of the form e'' — exp(it)).

Consider the punctured 3-dimensional Euclidean space R> \ {0}, endowed
with Cartesian coordinates (x, y, t) and spherical coordinates (r, ¢, 0) with

(x,y,t) = (rsin6 cos ¢, rsin O sin ¢, r cos 0).
For any ¢ > 0 let us consider the open subsets
U, = {(x,y,t) e R3\ {0} : +t > Tre} ,
which intersect in
Ui e = {(x,y,t) e R3\ {0} : t e (—¢, e)} .

We can define now a Ti-bundle P, — R3\ {0}, determined by the transition
function

gr Uy — Tk
(1, b, 0) — exp(ip).
Consider now the tx-valued (for tx the Lie algebra of Tx) 1-forms A, € Ql(Uy, 1)

defined as .
A = 5A(£1 + cos 0)dd.
It is easy to check that these define a Tx-connection V on P;. We can also consider
the field A
O(r,§,0) = 5~ € C(R*\ {0}, ).
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Definition 3.2.1. The tuple (P»,V, @) is called the standard Dirac Tx-monopole of
charge A on R\ {0}.

The curvature of the connection V is equal to
Fy = $Ad(cos 0dd) = —iAsin0dO A dd = —iAdQ,

where the 1-form dQ = sin0d06 A d¢ is the area form on the unit sphere. In
particular, one check easily that the Bogomolny equation holds

Fy = +(d®),

where » denotes the Hodge star operator taking 1-forms to 2-forms.

Consider now a real character x of Tx, which we think of as an element
X € t, = R", defining a map Tx — U(1) of the form exp(ix) — e'X*)  The
character x allows us to consider a 2-form (x, Fy) = 1(x,A)dQ € Q%(R3\ {0}), and
integrating this on the unit sphere we obtain an invariant

j (0 Fo) = —i(x, A>J 40 = —2mi(x, \).
52 52

Let T = (C*)" be the complex torus obtained as the complexification of Tx. The
Tk-bundle P, admits an extension of the structure group to a principal T-bundle
E,, with a natural reduction of the structure group h such that P) = E, , and the
connection V extends to an h-connection on [E,. The field @ can be also extended
to define a section of E)(t). We can now consider the connection D = V —i® on
[E, obtained from

Ar=Ai —10dt = AL — 1D sin 0d0.

The curvature of D is equal to
' A
Fq=Fa —1id(®dt) = —%?\ sin0do A d¢ + o2 sin 0dr A do.

By regarding R> as R x C we can consider another set of coordinates (z,t),
where z = x + iy is the complex coordinate on C. In these coordinates, we obtain

A
Fa = R(tdz A dzZ —zdz A dt + zdz A dt),

and N
—id(¢ddt) = —F(idz A dt +zdz A dt).
T

And therefore N
Fq = —(tdz A dZ + 2zdz A dt).
473

We conclude that FS{Z = 0 and thus D%! defines a mini-holomorphic structure
on [E). We denote the resulting mini-holomorphic bundle by €. Consider the
complexification of the real cocharacter A, which is a cocharacter of T, that we
also denote by A. The mini-holomorphic bundle €, has a Dirac-type singularity
of weight A at 0. Indeed, one can just take a suitable frame in which the parallel
transport is simply the transition function ga(r, ¢,0) = rexp(ipA) which induces
an element of G(F) in the orbit indexed by A.



128 CHAPTER 3. MONOPOLES AND INVOLUTIONS

The Hermitian—Bogomolny equation

We come back now to the setting of the previous section. Let X be a compact
Riemann surface with Kdhler area form wx (that we choose normalized to fx wx =

1)and put Y = S1 x X. Consider tuples of pairwise different points x1,...,xn € X
and realnumbers 0 < t; < --- <ty <2m and putx = (x1,...,xn), t = (t1,...,tn),
yi = (e, x)eY,y=Uy,...,yn)and Y =Y\ {y1,...,yn}.

Let G be a complex reductive group and K C G a maximal compact subgroup.
Take Tx C K a maximal torus, and consider the complexification T € G whichisa
maximal torus of G. We also consider B C G a Borel subgroup containing T. Let
A= (A1,...,An), with A; € X*(T)4, be a tuple of dominant cocharacters.

Let E — Y’ be a principal G-bundleand h : E — G/K a K-reduction of E, with
Ey, = h™}(K) the corresponding principal K-bundle. By a h-pair on E we mean a
pair (V, @), where V is a h-connection on [E and ® is a section of [E(g) obtained
from the natural extension of a section of E(f). In an abuse of notation, we keep
the symbol V to denote the associated covariant derivative.

Definition 3.2.2. A solution to the Hermitian—Bogomolny (HB) equation on E is a
h-pair (V, @) such that
Fy —*VD = iCwy,

for C € Z(t) some central element of the Lie algebra of K.

Remark 3.2.3. When C = 0, the above equation is called simply the Bogomolny equa-
tion; the slightly generalization we consider is called the Hermitian-Bogomolny
equation in an analogy with the distinction between Einstein/Yang-Mills equa-
tions and Hermitian Einstein/Yang-Mills equations. As we explained above, the
standard Dirac monopole is a solution to the Bogomolny equation.

Definition 3.2.4. A h-pair (V, @) on E has singularities of Dirac type (t,x, A) if

1. foreach j = 1,...,n there exists a neighbourhood B; of y; diffeomorphic to
a 3-ball and over which E admits a reduction to a T-bundle isomorphic to
the bundle E,; coming from the standard singular monopole of charge A;,
and

2. under this isomorphism, the field ® takes the form

i\
O=-——+0(1
2r )

and we have
V(rd) = 0(1).

We say that the h-pair (V, ®) is a singular h-monopole on E of type (t,x, A) if it
has singularities of Dirac type (t,x,A) and it is a solution to the HB equation.

Remark 3.2.5. The above definition ensures that a pair with singularities with Dirac
type can be locally approximated by a standard Dirac monopole, in such a way
that the curvature is O(r72), so it can be integrated around a singularity.
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Topological restrictions

Singular monopoles satisfy several topological restrictions. The first one has to
do with the possible values for the charges of a Dirac type singularity, which
is restricted due to the compacity of the base manifold Y. First, we make some
comments regarding characters.

Let W denote the Weyl group of G and consider X,(T)" c X.(T) the subgroup
of characters which are W-invariant. We remark that the W-invariant characters,
regarded as characters of G are G-invariant under the adjoint action of G on itself.
Therefore, for any character x € X*(T)" = X*(G)® and for any k-form on Y «
with values in the adjoint bundle E(g), we can define a k-form (x, &) € QK(Y).
Moreover, there is a natural isomorphism between W-invariant characters and the
dual of the centre

XMW =z = X(T)/X*(T9),
We call these characters central characters.

We denote by G*¢ the universal cover of G and by T*¢ its maximal torus. Recall
that the coroot lattice of G is equal to the cocharacter lattice X.(T*¢), which is
naturally included inside X.(T) and can be identified with the common kernel of
the central characters:

X(T) = {A e Xu(T): (x,\) =0,Vx € Z( } .

Indeed, the quotient of X.(T) by the common kernel of the central characters is
equal to the dual of Z under vector space duality between t and t*, which is equal
to m(G) = Xu(T)/X(T)* .

Proposition 3.2.6. If (V, ®) is an h-pair on E with singularities of Dirac type (t,x,\),
then

mn
Z A € X.(T5),.
i=1

Proof. Take a sufficiently small ball B; around each y; such that E can be approxi-
mated by the standard singular monopole of charge A; over B;. Since V is a connec-
tion, for any central character x € Z\é the corresponding 2-form (x, Fv) € Q3(Y)
is well defined and closed. Thus, by Stokes’ theorem, we have

mn
o= . awr=) [
Y\U?:lBi i=1 0B;

Now, recall that
J <X/ FV> = _27T1<X/ 7\] >/
0B;

so it follows that )\, (x, Ai) = 0. |

Remark 3.2.7. Compare the previous proposition with Proposition 2.1.6.

When (V, ®)isin facta h-monopole, solving the HB equation for some C € Z(),
then another restriction arises relating the topology of the bundle with the location
and weights of the singularities. We first give an auxiliary definition.
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Definition 3.2.8. For any h-connection V on E and any central character x € Z\.,
we define the x-Chern form of V as

X i
= —(x, Fv).
(V) = 5=(x Fv)
The x-degree of V is the integral

1
deg, (V) = . JY/ cX(V) A dt.

For pairs with Dirac-type singularities, the x-degree can be shown to be a
topological invariant depending just on the topology of the bundle and the weights
and locations of the singularities.

Proposition 3.2.9. If (V, @) is an h-pair on E with singularities of Dirac type (t,x, )
then, for any central character X, the x-degree of V is equal to

deg, (V) = deg(Eo(x)) ~ 5= D 1 A0,
i=1

for B — Xthe fibre Eog = E|(0yxx and Eq the complex line bundle associated to the action
of G on C* induced by the central character X.

Proof. To simplify the notation, we assume that all the t; are different, but the

same proof works for the general case. We want to compute the x-degree

1 1 1
degX(V) = % IY C?(V) Adt = %5‘[ v <X, FV> A dt.

For each t € (0,27), we denote

Fe(t) = Lt}xx W),

by putting to = 0 and t,4+1 = 271, we get

tiv1

degX(V) = ij fy (t)dt.

i=0 vt

Now, by Stokes’ theorem, for any point y € Y, for a sufficiently small € > 0,
and for any 2-form & on Y, we have

f &— & — & = dé.
{t+e}xX {t—e}xX 0B(y,¢€) ((t—€,t+€)xX)\B(y,¢€)
Therefore, foranyi=1,...,n,
fy(ti +€) = iy (ti —€) — cX(V) = J d(cf(V)).
0B(yi,€) ((ti—e,ti+€)xX)\B(yi,€)
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Now, since c?(V) is the Chern form of a connection, it is closed. On the other
hand, since (V, @) has a Dirac-type singularity of weight A; at yi, we have

JaB(yi,@ ()= ﬁ(—znux, A)) = (6 M)

Thus,
fx(ti +€) — fy(ti — €) = (X, Ay).
We conclude that fy has the form
) = F O+ D (0 M) = deg(Eolb) + D, (M.
iti<t iti<t

Summing up, we get that the x-degree of V is

g (V) = 5 2t =) [des(Ea) + Y ) |-
i= j=

Moreover, recall that )i, (x, A1) = 0. Using this, we get

deg, (V) = deg(Eo(x)) ~ 5= D ti(x M.
i=1

As we wanted to show. O

Proposition 3.2.10. If (V, ®) is a singular h-monopole on E of type (t,x, N), solving the
HB equation for a constant C € Z(¥), then

(x,C) = —27tdegX(V).

Proof. This this is an immediate consequence of the fact that, for any central
character x, we have jY, (x, *V®) A dt = 0, which in turn follows from *V® A dt =
Vt((D (DX). O

Special reductions on mini-holomorphic bundles

Upon further inspection of the HB equation Fy — *V® = iCwx, we note that
(locally), this is an equation for g-valued 2-forms on Y and thus it splits into (2, 0),
(1,1) and (0, 2) parts. After some manipulations, we obtain the equations

Fle — *th) = ijx
[VY, Vi —id(-)dt] =0,
[V Vi +i0(-)dt] = 0.

The first of these equations is called the real HB equation, while the other two are
called the complex HB equations. By the properties of h-connections, both complex
equations are equivalent, and they give the integrability of the associated mini-
holomorphic structure on E. Reciprocally, if € is a mini-holomorphic bundle with
underlying principal bundle E, then its Chern pair (V, @) is a solution to the HB
equation if and only if it satisfies the real HB equation.
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Definition 3.2.11. Let &€ — Y be a singular mini-holomorphic G-bundle of type
(t,x,A) and let h be a K-reduction of the underlying principal G-bundle. Let (V, @)
be the Chern pair associated to the K-reduction h.

We say that h is Hermitian—Bogomolny (HB) if (V, ®) is a solution to the HB
equation and we say that it is admissible if (V, @) has singularities of Dirac type
(t,x,A). If his both Hermitian-Bogomolny and admissible, we say that it is a
monopole K-reduction.

It is clear that the existence of the special reductions defined above is subject
to the topological restrictions. In particular, if £ admits an admissible reduction,
then X1'(x,Ai) = 0. Moreover, for any central character x, we can define the
x-degree of € as

degx(8) = degX(V),
where V is the Chern connection associated to any admissible reduction. This
definition does not depend on the choice of admissible reduction, and in fact

e, (£) = deg(Eq(x)) ~ 5= D ti06 A
i=1

Once we assume the existence of an admissible reduction, it only makes sense to
look for reductions h giving solutions to the HB equation with a fixed value of C,
such that

<X/ C) = 27 degx(g)/
for any central character .

Stability and the Charbonneau—Hurtubise—Smith correspondence

Let P C G be a parabolic subgroup. Let &€ — Y be a mini-holomorphic G-bundle
and consider o : £ — G/P a mini-holomorphic reduction of the structure group
of & from G to P. That is, o is compatible with the mini-holomorphic structure
of € and with the holomorphic structure of G/P in such a way that the resulting
P-bundle €, := o7!(P) C € is also mini-holomorphic. If h is an admissible K-
reduction, then the induced K-reduction on £ is also admissible. Indeed, being
admissible is a condition which is just verified locally at the level of T-bundles.
To any parabolic subgroup P C G we can associate a natural central character
xp € X*(Zp). Namely, we consider the Levi decomposition P = LP* and the

ajdoint representation Adiu : L — GL(p"). We now define the central character
xp:L— C tobe .
xp = detoAd] .

The following definitions of stability and polystability are due to Smith [ ]
and to Elliott and Pestun [ ], respectively.

Definition 3.2.12. Let € be a singular mini-holomorphic bundle on Y admitting
an admissible K-reduction. We say that € is stable if for any maximal parabolic
subgroup P C G and for any mini-holomorphic reduction o : £ — G/P, we have
that

deg, (Eq) <O.
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We say that € is polystable if there exists a (not necessarily maximal) parabolic
subgroup P C G with Levi factor L and a mini-holomorphic reduction of structure
group o : £ — G/L such that

1. the mini-holomorphic bundle € is stable,

2. for every character x € X*(P) which is trivial on Zg, we have

deg(EO',O(X)) = O/
for B = Eolqoyxx — X
We can now state the CHS correspondence.

Theorem 3.2.13 (Charbonneau-Hurtubise-Smith). A mini-holomorphic bundle &
admits a monopole K-reduction if and only if it is polystable.

Remark 3.2.14. The above theorem was originally proved by Charbonneau and
Hurtubise [ ] for the vector bundle case (G = GL,,(C)) and later generalized
by Smith [ ] to the general case of any reductive group. The original result
has been widely generalized in Mochizuki’s book [ . The reader can also
refer to the papers of Biswas and Hurtubise [ ] and of Yoshino [ ] for
other generalizations. We also refer to Elliott-Pestun [ , Section 6] for a survey
of the topic.

Although the proof of the CHS correspondence is beyond the scope of this doc-
ument, for completion we can give a very brief outline of the main ideas involved.
The polystability condition follows from the existence of a monopole reduction
by a standard argument, so really the difficult part is the other direction. The
proof relies in two essential facts. The first one is that by using the results of Kron-
heimer [ ] and Pauly [ ] one can locally resolve Dirac type singularities
by pulling back through the Hopf fibration. Using this, one can glue appropiately
to obtain a holomorphic G-bundle on the 4-manifold S! X S! x X and a K-reduction
on it with suitable regularity. The second essential fact is the Hitchin-Kobayashi
correspondence between polystable holomorphic bundles and instantons, which
at this level of generality is due to Simpson. This yields an instanton on S x S! x X
which after dimensionally reducing to S! X X gives a solution to the HB equation.

3.3 THE MODULI SPACE OF MONOPOLES

The moduli spaces of magnetic monopoles in R® and their natural metrics have
been widely studied in the gauge theory literature, for example in the book of
Atiyah and Hitchin [ ] and in the paper by Cherkis and Kapustin [ I
Using similar methods to the ones used in those texts, we can formally construct
a moduli space of singular monopoles on the product of a Riemann surface and a
circle, with prescribed singularities. Again, we repeat that the constructions that
we reproduce here are valid at a formal level, whereas a rigorous treatment of
the problem would involve several analytic considerations, the study of which we
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omit in this thesis. For a lot of our concerns, we follow the arguments of Elliott
and Pestun | ].

The moduli space of singular monopoles is naturally equipped with a Kahler
structure and moreover, when the Riemann surface has genus 1, it admits a hyper-
Kéhler structure. In that case, the moduli space can be constructed equivalently
as a holomorphic-symplectic quotient, yielding a holomorphic-symplectic form
equivalent via the CHS correspondence to the Hurtubise-Markman symplectic
form on the moduli space of simple multiplicative Higgs bundles.

For the following, we repeat the setting of the previous section. We recall
that X is a compact Riemann surface with Kdhler form wx normalized to 1 and
put Y = St x X. We also let G be a complex reductive group and fix a maximal
torus T C G, a Borel subgroup B C G and a maximal compact subgroup K C G
compatible with the pair (B, T) in the sense that T is a complexification of a
maximal torus of K (in other words, T is R-split for the real form K).

We prescribe the singularities by taking x = (x1,...,xn) a tuple of points of
X, assumed to be distinct, t = (t1,...,tn) a tuple of angles in (0,27) and A =
(A1,...,An) a tuple of dominant cocharacters A; € X.(T).. We put y; = (ettt, xy),
Y=y, Yyn) Y =Y\ {y1,...,yntand X’ = X\ {x1,...,xn }.

The Kdéhler quotient

Let E — Y’ be a principal G-bundle and h : E — G/K a K-reduction of E. Let €
be the space of h-pairs (V, @) with singularities of Dirac type (t,x,A). This is an
infinite dimensional affine space modelled over the vector space

Q'Y En(1) @ Q°(Y, En(H))

and it admits a natural symplectic form w; defined as follows. Take a point
(V,®) € € and consider two vectors (B, ¥1), (B2, ¥2) € Tia,0)C. Now, recall that
we have an splitting

QN Y, En(})) = pry Q' (X, En(}) ® Q°(Y, En(f))dt,

so we can decompose B; = Bi x + Bi+dt. Let us choose now an invariant bilinear
form k on f, which naturally induces a map « : Q*(X’, Ep,(f)) — Q?(X’), and define

w((B1,¥1), (B, ¥2)) = f (k(B1,¢,¥2) = k(W1, Bot))wx A dt — k(B1,x A By x)dt.
Y/

Here, we recall that A : Q'(X, En(1))?> — Q?(X’, En(1)) takes the wedge product
on the form part and the Lie bracket on the Lie algebra part. The form wy is clearly
closed since it does not depend on the pair (V, ®).

Consider now the group of gauge transformations G = Q°(Y’, En(K)), which acts
on C by preserving the symplectic form wy, since the form is chosen to be Ad-
invariant. A standard computation shows that the moment map for this action
is

e 0 € — Q*(Y, En(h)
(V,®) — Fy x —*V O,
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Note that pu(V, @) is precisely the left hand side of the real HB equation. We
can then consider the symplectic quotient u;'(iCwx)/S and get the space of
monopoles by further imposing the complex equations.

Definition 3.3.1. The moduli space of singular h-monopoles on E of type (t,x, ) is the
subvariety

Mixa = Mixa(E, ) = {[A,©] € 17 (iCwx)/G : [VY, Vi — i0(-)dt] = 0}

The space C is naturally endowed with a Riemannian metric

’

g((B1,¥1),(Ba, ¥2)) = J K(B1,x, B2 x)Adt+k(By,t, Bot)wx Adt+k(Wq, Y2)wx Adt.

Now, if we consider the complex structure Iy on C defined as It(Bx) = — * Bx,
I{(By) =¥ and I(¥) = —By, it follows that

w((B1, Y1), (B2, ¥2)) = g((B1, Y1), Lt(Bz, ¥2)).

Therefore, the triple (g, w¢, I) determines a Kdhler structure on €. The symplectic
quotient p iCwx)/G can now be regarded as a Kihler reduction and thus it
inherits a Kdhler structure. Finally, since we have that the complex equation

[Vg)él, V¢ —i®(-)dt] = 0 is It-holomorphic, we conclude that the space My x A has
a natural Kéhler structure induced from (g, wy, I).

The hyper-Kihler quotient

Suppose that the Riemann surface X has genus 1, and thus it has trivial canonical
bundle Kx = Ox. In that case, we can take local coordinates real (x,y) on X and
the complex coordinate z = x + iy, and obtain global decompositions

QYY,C) = C*(Y,C)dz @ C*(Y,C)dz @ C*(Y,C)dt
= C®(Y,C)dx ® C(Y,C)dy ® C(Y, C)dt.

Therefore, we can identify an element (V, @) of C with a tuple (A, Ay, A¢, @), for
the Ay, v = x,y, t and © sections of [Ey(f) — Y’, so that we recover the covariant
derivative of V as

dv =da =d+ Axdx + Aydy + Adt.

We d_enote da,y = d+Aydv, forv =x,y,t. Wecanalsodefine da x = da,x—1ida y
and aA,X = dA,x + idA,y.
In this case we can write

w((B1,¥1),(B2, ¥2))

= J [K(Bl,t; 1PZ) - K(Wl, B2,t) - (K(Bl,X/ Bz,y) - K(Bl,y/ BZ,X))]dXdU dt
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and it is then possible to define other two symplectic structures

wx((B1,¥1),(B2, ¥2))

= || KB )~ 1, Ban) = (KB, Baa) = (B, By anayat
wy ((B1,¥1),(B2, ¥2))

= || KB, 42) = (1, Bay) = (B, Ban) = k(B Byt

We also obtain a more explicit description of the complex structre I as
It(BX/ By/ Bt/ql) = (By/ _BX/W/ _B‘t)
and we can thus define other two complex structures

IX(BX/ By/ Bt/\y) = (ly/ Bt/ _By/ _BX)
IU(BX/ By, Bt,\y) = (Bt, _\J!, _Bx, By).

One checks easily that these complex structures satisfy the quaternion relations
2 12 _ 12 =
E=3=_=-1
LI, =1,

and that I, and I are g-compatible with wy and w,, respectively. Therefore, we
obtain a hyper-Kéahler structure on the space C.

The action of the group § is also symplectic for wy and wy and the resulting
moment maps are, respectively

x(V, @) = da, @ — [da,, dA,]
py(V, D) = d,z\y(D —[da,,dA, ]

These two equations can be obtained from the HB equation and can be combined
to give the complex equation, which in this case can be written as

[0Ax,dAt —i®@(-)dt] = 0.
We can put these moment maps together to obtain a hyper-Kihler moment map

n: € — Lie(5) ® R
(V,®) — Fy —#dv @,

and thus we obtain the moduli space of monopoles as the hyper-Kihler quotient

Mixa = uiCwx)/S.
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As a holomorphic-symplectic quotient

In the same setting as above, by putting w, and wy together we can obtain a
holomorphic-symplectic form O = wy + iwy. It is easy to check that this co-
incides with the Hurtubise-Markman symplectic form on the moduli space of
multiplicative Higgs bundles. Moreover, the group of complex gauge transforma-
tions G€ = Q°(Y’, E(g)) acts on € holomorphic-symplectically with holomorphic
moment map given by

M(V, ®) = [0a x, dat — iD(-)dt].

One can then also obtain the moduli space M¢x A as a holomorphic-symplectic
manifold, by restricting to the subspace C* C € formed by pairs which define a sta-
ble multiplicative Higgs bundle, and taking the holomorphic-symplectic quotient
(M~1(0) n€%)/5¢.

3.4 INVOLUTIONS AND FIXED POINTS, II

Mini-holomorphic bundles and involutions

Let G be a complex reductive group and let 8 € Auty(G) be a holomorphic
involution of G. Let € € {-1,1}. We fix X, Y, x and t as in the previous section
and keep our notations from there. Moreover, we fix a maximal 0-split torus
A C G, a O-stable maximal torus T C G containing it, and a Borel subgroup B C G
contained in a minimal 0-split parabolic and with T C B.

To any singular mini-holomorphic G-bundle &€ — Y we can associate another
mini-holomorphic G-bundle

19(&) = ¢.6(8),

where 0(E) is the associated G-bundle to the action of G on itself by 6, and
(e : Y — Y is the involution

Ce:STxX— SxX

(e't,x) —> (e, x).

Let E = Eg — X be the restricted bundle &£|(1}xx, endowed with the holomorphic
structure coming from the mini-holomorphic structure of €. If ¢ : E|x» — E|x
denotes the scattering map of €, then the scattering map of (€ is equal to @1
Moreover, restricting 6(€) to X yields the holomorphic bundle 6(E) and the scat-
tering map of 6(€) is 8(¢). Summing up, we have that the mini-holomorphic
bundle (2(€) corresponds to the multiplicative G-Higgs bundle

L9(E, @) = (8(E), 8()©).

In Section 2.3 we studied the map (E, ) — (6(E), 0(¢)€) and obtained its fixed
points in the case it made sense to do it. We study the same problem now from the
perspective of mini-holomorphic bundles, by considering the map & + (.06(E).
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As for multiplicative Higgs bundles, the case e = —1 is particularly interesting.
For that reason, we restrict ourselves to the case ¢ = —1, the results for the case
e = 1 being sufficiently straightforward for us to omit them here. To simplify the
notation, we put ¢ = (1 : (e't,x) > (e7't, x).

We also remark that, as in the case of multiplicative Higgs bundles, if 6 and
0" are two involutions that differ by an inner automorphism, meaning that there
exists « € Int(G) such that 0’ = « 0 6, then 6(€) = 0’(€). Therefore, for any class
a € Outz(G), the map 12 : € — ('0(E) for any representative element 0 of a, is
well defined at the level of isomorphism classes of mini-holomorphic bundles.

A first important thing to note is that if € is of type (t,x,A), then (*0(€) is of
type (E,x, (-8(N)).), for

t=0Q2n—tn,2mr—tn_1,...,2m—t1),

and where we recall that (—0(A;))+ denoted the dominant cocharacter in the orbit
of —0(A;) under the Weyl group. Since we assumed the x; to be distinct, we have
(t,x) = (t,x) if and only if t = (7, 7,...,7). We denote this vector simply by
t = . Therefore, a necessary condition for (the isomorphism class) of a mini-
holomorphic G-bundle to be fixed under the involution (¢ is that it is of type
(7, %, A), with A satisfying the condition A = (—6(A))..

As for multiplicative Higgs bundles, we can say that a mini-holomorphic
bundle € is simple if its only mini-holomorphic automorphisms are those given by
multiplying by elements of the centre Zg of G. We can go on now to describe the
simple mini-holomorphic bundles which are fixed under the involution (¢, but
before we need an auxiliary definition.

Definition 3.4.1. Let c € Z% be an element of the centre of G fixed under 6. A
(Z2/2,6, ¢, c)-equivariant structure on € is a diffeomorphism n of € preserving the
mini-holomorphic structure such that

1. the following diagram commutes

e —se¢

Lo

YéY/

2. forevery g € G, we haven(e - g) =e- 6(g),
3. and such thatn?(e) = e - c.

Remark 3.4.2. The kind of structures just defined are a particular case of (T, 6, , c)-
equivariant structures, where I' is a finite group, 0 and ( are homomorphisms
from T to Aut(G) and to Diffeo(€), respectively, and ¢ € Z*(T, Zg) is a 2-cocycle
in the group cohomology theory of I with values in Zg associated to the action
induced by 6. We refer the reader to the paper [ ] for more information
about this kind of equivariant structures.
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Proposition 3.4.3. If € is a simple singular mini-holomorphic bundle of type (7,x, A)
with A = (=0(A))4, then € = 2(E) if and only if it admits a (Z/2,0, , c)-equivariant
structure.

Proof. Indeed, an isomorphism E — (*6(E) can be understood as a diffeomor-
phismn : E — E preserving the holomorphic structure and satisfying properties
1 and 2 in the definition of (0, , c)-equivariant structure. Now, from these prop-
erties it follows that n? is an automorphism of E, and thus, since E is simple,
n?(e) = e - c for some ¢ € Zg. Moreover, if f,(e) € G is such that n(e) = e - f,,(e),
then ¢ = f,;(e)0(fy,(e)) and thus ¢ = 6(c). O

We can now recover our results on fixed points of multiplicative Higgs bun-
dles from the point of view of mini-holomorphic bundles. Indeed, suppose that
€ admitsa (Z/2,6, ¢, c)-equivariant structure given by 1. Let Eg — Xand Ex — X
denote the bundles &[{1}xx and €[{_1}xx- endowed with their respective holomor-
phic structures induced from €. Both {1} X X and {-1} X X are submanifolds of Y
fixed under ¢ and thus 1 induces two biholomorphisms 19 = n|g, and nx = nle,.
Moreover, from property 2 in the definition of equivariant structure, it follows
that they are in fact 0-twisted automorphisms and from 3 it follows that the cor-
responding G-equivariant maps fy, : Ep — G and f;;, : Ex — G in factor through
the subset

SY={seG:s0(s)=c}.

Since the maps fy, and fy,,, are G-equivariant, they must factor through 0-twisted
orbits G * sg and G * s respectively, for sp, s € Sg. These orbits are isomorphic
respectively to G/G% and G/G®~, for 0y = Ints, 00 and 0, = Ints_00. We have
shown the following.

Proposition 3.4.4. If (the isomorphism class of) € is fixed under \2, then there exist two
involutions 0, 0, representing the class a such that Eq reduces to G% and E, reduces to
GO,

The reduction of the scattering map ¢ that we gave in Theorem 2.3.4 can be
now deduced from the fact that N = 1o o @. Indeed, from here and using that
nZ(e) = e c for any e € E,, we obtain that

fﬂo(e)e(ftp (e))fno(e)_l ="Te (e)_lr

so if fy,(e) = so, we have that f, restricted to the reduction to G® factors through
S%. The section ¢ can then be interpreted as measuring the difference between
the two reductions to G% and G°~ and, indeed, G% = G°~ if and only if sp and
S are in the same O-twisted G-orbit, which happens if and only if f, takes values
in M%. We conclude the following.

Proposition 3.4.5. A mini-holomorphic bundle £ corresponds to a multiplicative G-
Higgs bundle coming from a multiplicative (G,0)-Higgs bundle if and only if there
exists some 0" in the same class in Outy(G) as 0 and some ¢ € Zg such that € has a
(Z2]2,9', ¢, c)-equivariant structure with fy, and ., taking values in the same ©’-twisted
G-orbit, isomorphic to G/ G°.
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Singular monopoles and involutions

Let K € G be a 0-stable maximal compact subgroup of G and let h be a K-
reduction of a singular mini-holomorphic G-bundle € on Y. Since K is 0-stable,
for € € {-1,1} the map (.0(h) : (t0(€) — G/K is also G-equivariant and thus
it also defines a K-reduction. Moreover, if (V, @) is the Chern pair associated to
h, then the Chern pair associated to (. 0(h) is equal to (.0.(V, ®@). Locally, if V is
determined by a f-valued 1-form A that we may decompose as A = Ax + A, we
have

C*ee*(AX/ Atr q)) = (G(AX(eeit/ X)), ee(At(eeit/ X))/ ee(q)(eeit’ X)))
Since we are assuming that t = 7, for any central character x we have

degX(€) = deg(Eo(X))-

Using this it is easy to show that if a mini-holomorphic bundle € is polystable
then ¢, 0(€) is also polystable, and thus the involution ¢ induces the following
involution on the moduli space of h-monopoles

Mn,x,)\ — Mn,x,)\
(Ax, At, @) — (0(Ax(e™,x)), e0(A¢ (e, x)), €0(D (e, x))).

A straightforward computation shows that, indeed, the h-pair on the right hand
side verifies the HB equation, provided that the one on the left hand side does.
As a consequence, for an h-monopole fixed under this involution, we have
that the tuples (Ax, At, @)|;1)xx and (Ax, At, @)|(—1}xx are gauge equivalent to
(6(Ax), €0(Ay), €0(D))|(13xx and (B(Ax), €0(A+), €B(D))|(-1)xx, respectively. So
there exist two involutions 8 and 6, representing the same class in Outy(G) as
0 such that Ax|{1}xx takes values in %, Atl{ixx and @[y« take values in m?,

Ax|{-1}xx takes values in 97 and Atl{1yxx and @|1yxx take values in m%‘. Here,
for any involution 0, if K is a 6-stable maximal compact subgroup and we consider
the restriction of 6 to K, then t° and my, are respectively the +1 and —1 eigenspaces

appearing in the Cartan decomposition
. _ 50 0
t=1" omy.

When we assume that X has genus 1 we can show how the involutions 1 behave
with respect to the hyper-Kéhler structure on the moduli space M x a. This case is
of particular interest since special submanifolds of hyper-Kdhler manifolds appear
in the context of mirror symmetry. In particular, a manifold which is Lagrangian
with respect to one of the symplectic structures w- of the hyper-Kdhler manifold
is said to be of A type with respect to that component, whereas if it is a complex
submanifold with respect to the structure I, then it is said to be of B type. This
way, by a submanifold of type (B, B, B) we mean a hyper-Kéhler submanifold.
On the otherhand, by a submanifold of type (B, A, A) we mean a submanifold
which is complex with respect to the first component but Lagrangian with respect
to the other two. Analogously, we can say that a diffeomorphism of a hyper-
Kéhler manifold into itself is of A type with respect to a certain component if it
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is Lagrangian or, equivalently, anti-holomorphic, with respect to that component

and of B type if it is holomorphic or, equivalently, symplectic. If a map is of A type

(respectively, of B type) with respect to a component, then its fixed points form a

submanifold of A type (respectively, of B type) with respect to that component.
Recall that 1§ acts on a tuple (A, Ay, Ay, @) by mapping it to the tuple

(6(Ax(et, x,y)), 0(Ay(et, x, 1)), eB(Ar(et, x, y)), €0(D(et, x, Y))).
Therefore, the differential of (, acts as
(Bx, By, By, ¥) = (e6(Bx), €8(By), 6(B+), 6(¥)).
Thus,

Lg,* © (It/ IX/ Iy) = (Itl EIX/ er) o Lg,*

and
(Lﬁ)*(wt, W, wy) = (W, EWy, ewy).

We conclude that § is of type (B, B, B) when e = 1 and of type (B, A, A) when
e=-1






FURTHER DIRECTIONS

LANGLANDS DUALITY AND MIRROR SYMMETRY

We expect that multiplicative Hitchin fibrations are Langlands dual in a similar
manner as how "additive" Hitchin fibrations are, by the results of Donagi and
Pantev [ ]. More precisely, in forthcoming joint work with Benedict Morrissey
[GM], we study the following problem. We assume that G is semisimple and let
G*¢ be its simply-connected cover. Let G be the Langlands dual group of G and
G its simply-connected cover (which is isomorphic to the Langlands dual group
of G29). Consider .#(G, G*) to be the moduli stack of G**-valued multiplicative
G-Higgs bundles, by which we mean pairs (E, ¢) with E — X a principal G-
bundle and ¢ a meromorphic section of E(G*), which is well defined since G
acts on G*¢ through the adjoint action. We define the moduli stack .# (G, G%)
in a similar way. We remark that it follows from considering the short exact
sequence 1 — m1(G) — G* — G — 1 and the long exact sequence associated to it
both of these stacks are just connected components of the usual moduli stacks of
multiplicative Higgs bundles .#(G) and . (G) where some topological invariant is
fixed (see [ , Section 3.2]). We can thus consider the Hitchin bases %(G, G5)
and (G, G*°) associated to these stacks, and the corresponding multiplicative
Hitchin fibrations hg and h.

Note that the invariant inv(¢) for a pair (E, @) in (G, G*) is a divisor with
values in X.(T5¢), which is the coroot lattice of G. The vector space isomorphism
t = t* induced by an invariant bilinear form sends coroots to roots, and thus
matches the coroot lattice X,(T5¢) of G with the root lattice X*(T2%) which is equal
to X*(TSC), the coroot lattice of G. Therefore, the corresponding stacks of invariants
(G, G*) and o/(G, G*) are matched under Langlands duality. This motivates
the conjecture.

Conjecture 1. The multiplicative Hitchin maps hg : M(G,G*) — AB(G, G*) and
he  M(G, G*) — B(G, G*°) are Langlands dual in the sense of Donagi—Pantev.

This conjecture can be generalized to other stacks of multiplicative Higgs
bundles of the form .#(Gy, G1), for Ggp and G; a pair of isogenous semisimple
groups. Potentially, the assumption of semisimplicity can also be dropped. Note
that under Langlands duality the fundamental group m1(G1) is matched to its
dual group m11(G1)" = Z, . Therefore, we conjecture the following.

Conjectuvre 2. The multiplicafivevHitchin maps hg : M(Go, G1) — B(Gy, G1) and
hg @ M (Go, G /Zg,) — B(Go, GI/Zg,) are Langlands dual in the sense of Donagi—
Pantev.

143
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The justification behind these conjectures relies on the well known properties
of the multiplicative Hitchin fibration, studied by Bouthier, J. Chi and G. Wang
[ , , , , ]. In particular, the description of the regular
centralizer for very flat monoids, as studied in the works of Chi and Wang, pro-
vides the evidence behind the matching of the two fibrations. Once the regular
centralizers are matched, one can match the corresponding Picard stacks, and
proceed as in the Donagi-Pantev case. More precisely, we believe that the general
arguments given by Chen and Zhu [ ] in their proof and generalization of
the result of Donagi-Pantev should translate to this case in a very straightforward
manner.

Recall that it is conjectured that Higgs bundles for a real form Gr of G define
the support of a (B, A, A)-brane in the Hitchin moduli space which corresponds
to Higgs bundles for the Nadler dual group Gg, C G of the real form G [ I
In the multiplicative case, we recall that, assuming that X is an elliptic curve, our
Theorem 2.3.10 aswell as our comments at the end of Section 3.4, imply that (the
image of) multiplicative (G, 0)-Higgs bundles form a submanifold of (B, A, A)-
type inside the moduli space of multiplicative G-Higgs bundles. Therefore, we
have a similar conjecture for this multiplicative situation, which we can roughly
state as follows.

Conjecture 3. Suppose that X is an elliptic curve. Then, forany © € Auty(G), multiplica-
tive (G, 0)-Higgs bundles define the support of a (B, A, A)-brane inside 4 (G, G*°) dual
to the (B, B, B)-brane inside #(G, G*) formed by multiplicative G g ,go-Higgs bundles,
where éG/GS is the dual group of G/ GP°.

Some justification behind this conjecture is that by construction the dual group
contains A, the dual of a maximal 8-split torus, as maximal torus, its Weyl group
is Wp and its dominant Weyl chamber is X.(A ge)+. Hence, one should be able to
match the corresponding stacks of invariants in each case.

REGULAR QUOTIENTS FOR SYMMETRIC VARIETIES

The description of the Hitchin fibration given by Ngo relies deeply in the descent
argument [ , Lemme 2.1.1] for the centralizer group scheme of the Lie algebra
g from the regular locus ¢™# C g to the GIT quotient g / G. The same problem can
be formulated in the context of the generalized Hitchin map of Morrissey and Ngo
[ , ] that we explain in Section 2.1.

We recall that the generalized Hitchin map is formulated by taking an affine
variety X acted on by two reductive groups H and Z with commuting actions, and
studying the map of stacks

[2/(HxZ)] — [(Z [ H)/Z].

The analog of the centralizer group scheme is the group scheme of stabilizers
M — X with
Iy ={geG:g-x=x},
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for x € L, and consider the regular locus 28 C X consisting of the points where
the stabilizer has minimal dimension, so I is flat over 8. Ideally, one would
want I to descend to a group scheme J (or more generally to a band in the sense of
Giraud [ ] if I is not abelian) defined over the GIT quotient £ / H, and show
that [X/H] — £ / H determines a gerbe banded by ] . However, there are no-go
results for this. Roughly, if the GIT quotient does not parametrize regular orbits,
then I does not descend to a band. Examples of this behaviour are provided by
the Hitchin fibration for symmetric pairs; the reader may consult the paper of
Garcia-Prada and Pe6n-Nieto [ , Example 1].

A solution for this consists in considering some intermediate space ~/H,
between the quotient stack [Z/H] and the GIT quotient £ / H, parametrizing
regular orbits, which is called the reqular quotient. The definition of the regular
quotient is due to Morrissey and Ngo [N, ], although similar ideas were
originally proposed independently for the symmetric pair case by Garcia-Prada
and Pedn-Nieto [ ]. The construction of the regular quotient is based in
the process of rigidification (see [ , Appendix Al]).

It is a result of Morrissey—Ngo [IVIIN, ] that the group scheme I — 28
descends to aband ] over the regular quotient 28 /H and the quotient stack [~ /H]
is a gerbe banded by J. A Z-equivariant version of this is also given by Morrissey—
Ngo, which allows to extend the results to the map [Z/(H x Z)] — [(Z/H)/Z].
It follows that the study of the generalized Hitchin map for this situation can be
essentially reduced to the description of the regular quotient X™& /H.

Thus, in relation with the multiplicative Hitchin map for symmetric embed-
dings considered in Section 2.2 we suggest the consideration of the following
problem.

Problem 1. Let G be a semisimple simply-connected complex group and © € Auty(G) an
involution. Study the regular quotients

(G/G)H/G® and Env(G/G®)JG°.

On the one hand, if m® denotes the —1-eigenspace of 0 in g, the study regular
quotient m® /G® is the fundamental piece for the description of the (additive)
Hitchin fibration for symmetric pairs. A complete description of this regular
quotient is given in forthcoming work of Morrissey and Hameister [ , ].
On the other hand, descriptions of the regular quotients G/ G and Env(G)/ G are
provided in the work of Morrissey and Ngo.

Both the description of m? /G® and of G /G rely on the existence of sections
or cross-sections of the GIT quotient * — X / H. In the first case, the existence of
such a section is a result of Kostant-Rallis [ ], while in the group case there
is the Steinberg cross-section [ ]. The existence of a similar cross-section for
the global case of a symmetric variety G/G° acted on by G® remains, to our best
knowledge, an open question. A positive answer to it would enable a method
towards the study of Problem 1.

Question 1. Is there a cross-section of the GIT quotient G/G® — (G/G®) J G®?
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GENERALIZATION TO SPHERICAL VARIETIES

The definition of a multiplicative (G, 0)-Higgs bundle can be generalized directly
to the case of a pair (G, H), for any subgroup H c G. Indeed, one can consider
pairs (E, @) with E — X a principal H-bundle and ¢ a section of the associated
bundle of symmetric spaces E(G/H) through the left multiplication action of H
on G/H, defined over the complement of a finite subset of X.

The invariant of such a ¢ is a divisor which takes values literally in the quotient
of loop spaces (G/H)(F)/G(0O). It is a result of Luna and Vust [ ] that this
quotient is identified with a subset V! of the valuation cone V of G/H. The valuation
cone admits a natural injection inside the dual of the weight lattice, P(G/H)". We
refer to Timashev’s book [ ] for a definition of the valuation cone and for
proofs of these results. Moreover, if we further assume that G/H is a spherical
G-variety, then V1 = V. If we fix a maximal torus T, recall that we can associate
the torus Ty = T/(TNH) to the spherical homogeneous space G/H and the weight
lattice of G/H is equal to P(G/H) = X*(TH). We refer to Section 1.4 for more details.
Therefore, the set (G/H)(F)/G(O) consists of cocharacters of the torus Ty;. When
G/H is a symmetric variety, we also know that these cocharacters are precisely
the anti-dominant ones (that is, those lying in the intersection of X.(T) with the
anti-dominant Weyl chamber).

It now makes sense to pose the following question.

Question 2. Is there a generalization of the theory of very flat monoids and the theory
of very flat symmetric embeddings to a theory of "very flat spherical varieties”? Is there
a generalization of the Vinberg and the Guay enveloping embeddings to the context of
spherical varieties?

Note that both the theory of very flat monoids and the theory of very flat sym-
metric embeddings are defined over very concise varieties. By this we mean that
the theory of very flat monoids studies embeddings of a groups with semisimple
part simply-connected, while the theory of very flat symmetric embeddings stud-
ies embeddings of symmetric varieties with semisimple part equal to G/G® for G
simply-connected and 0 € Aut,(G), or, equivalently, to G/G?, for any semisimple
group G and 0 € Auty(G). In both cases, the wonderful compactifications of G2
and G/Gg play an important role.

The above motivates the question of what groups associated to a spherical
subgroup H C G play the same role as Gg and Gg in the theory of symmetric
varieties. For the role of Gg it seems clear that one should pick the spherical closure
H of H. This is the minimal group H containing H such that the space G/H admits
a wonderful compactification. For some cases it looks like a good candidate H°
to replace G could be the common kernel of all the characters of H, but this does
not work in every case since there are examples where the common kernel of the
characters of G° is not equal to G§.

In any case, if one takes a semisimple group G and a spherical subgroup H C G,
and finds H ¢ H a good analog of G?, it makes sense to consider the category
of simple affine embeddings of spherical homogeneous spaces with semisimple
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part G/H". Here, by the semisimple part of a homogeneous space G/H we simply
mean the quotient G’/(H N G).

For any such spherical embedding £ of a homogeneous space Os that has
semisimple part equal to G/ HO, one can consider the torus Ay = Oy /G, and the
GIT quotient Ay := X / G. We call this Ay the abelianization of X and the natural
projection £ — Ay the abelianization map. This allows to give a definition of very
flat spherical embedding of G /H® and of the category VF(G/H) of very flat spherical
embeddings with excellent morphisms.

The remaining problems would be to describe the objects of this category
VF(G/H) in terms of their weight semigroups, and to find a universal object, if
it exists. For the second problem, if we take H? equal to the common kernel of
the characters of H, we expect from the results of Brion [ ] that the correct
candidate is the Brion—Cox embedding of G /HP.

We explain now the definition of the Brion—Cox embedding. If L is a smooth
projective variety such that its Picard group Pic(X) is free, then one can consider
its Cox ring

Cox(2)= P HUX D).

LePic(X)

Wonderful varieties are well known to have a free Picard group. If G/H is a spher-
ical homogeneous space, we define the Brion—Cox embedding to be the spectrum of

the Cox ring of the wonderful compactification G/H of G/H, that is, we put

BC(G/H) = Spec(Cox(G/F)).

We refer to | ]and to [ , Section 30.5] for more information about the
Brion—Cox embedding. An important property of the Brion-Cox embedding is
that, if G is a semisimple simply-connected group, regarded as a spherical G-
variety, then BC(G) is equal to the Vinberg monoid Env(G). However, if G/ G°
is a symmetric variety, the relation between BC(G/G?) and the Guay embedding
Env(G/G?) has not been yet dilucidated, to the best of our knowledge.

Question 3. Let G be a semisimple simply-connected group and © € Auty(G) an invo-
lution. What is the relation between the Brion—Cox embedding BC(G/G®) and Guay’s
envelopping embedding Env(G/G°)?

To sum up, we think that a generalization of the theory of very flat monoids
and very flat symmetric varieties should follow the next outline:

1. Determine the correct analogues of G 8 and Gg.

2. Define the abelianization.

3. Determine the very flat objects in terms of their weight semigroup.
4. Find a (uni)versal very flat object.

Finally, in order to have a description of a conjectural Hitchin fibration for
spherical varieties in terms of cameral covers, one needs to obtain some general-
ization of the results of Richardson concerning the invariant theory of a symmetric



148 FURTHER DIRECTIONS

variety G/G? to spherical varieties. This would also be a "'multiplicative analog" of
the results of Knop [ ]. Thisis a problem still widely open and we refer to the
comments given by Knop in a MathOverflow answer [Kno] for more information
about it. Conjecturally, at least for H reductive, we expect that the GIT quotient
(G/H) / H, for G/H a spherical homogeneous space, is isomorphic to Ty /Wg/n,
for Ty = T/(TNH), T € G a maximal torus contained in a Borel subgroup B C G
with a dense orbit in G/H, and Wy the little Weyl group of the spherical variety
G/H, as defined by Brion [ ]. The results of Luna—Richardson [ ] might
give some insight into this problem.

INTRINSIC GAUGE EQUATIONS

The Charbonneau—Hurtubise-Smith theorem, our Theorem 3.2.13, can be under-
stood as a Hitchin-Kobayashi correspondence for mini-holomorphic bundles, in
the sense thatit relates a polystability condition, defined at the (mini-)holomorphic
level with a gauge theoretical equation (the HB equation) obtained from the mo-
ment map of the action of some group of gauge transformations on an infinite
dimensional space of pairs. At the moduli space level, this implies that the moduli
space of polystable mini-holomorphic bundles can be constructed as a symplectic
(and, in fact, Kédhler) quotient. Provided the equivalence of categories (for fixed t)
between mini-holomorphic bundles and multiplicative Higgs bundles, the CHS
correspondence can in turn be understood as a Hitchin—Kobayashi correspon-
dence for multiplicative Higgs bundles.

However, it still makes sense to pose the question of whether a stability condi-
tion, a gauge equation and a Hitchin—Kobayashi correspondence could be given
in a completely intrinsic manner; that is, only considering data depending on the
Riemann surface X, and not involving the circle S nor the parameters t, at least
not a priori.

We expect that this problem fits inside the more general theory of pairs con-
sidered by Mundet i Riera in [ ]. These are pairs of the form (E, ¢), where
E — X is a holomorphic G-bundle over a compact Kdhler manifold X, and ¢
is a holomorphic section of the associated bundle E(X), for £ a Kdhler manifold
endowed with a left action of G. As additional data, one needs to fix a maxi-
mal compact subgroup K, an invariant bilinear form (providing an isomorphism
t = 1), and suppose that there exists a moment map p : £ — f for the induced
K-action on X. Note that, given a reduction h of the structure group of E from G
to K, the section ¢ can now also be regarded as a section of E,(X). Mundet i Riera
defines a stability condition for this kind of pairs, depending on some central
element C € Z(f), and proves that a pair satisfies this condition if and only if the
Chern connection V of E associated to h gives a solution of the equation

Fv + w(e) = C.

The formulation of multiplicative Higgs bundles in terms of monoids, allows
us to regard a multiplicative Higgs bundle of singularity type (D, A) as a pair
(E, @), for E — X a holomorphic G-bundle and ¢ a holomorphic section of the
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associated bundle E(M*?). Here, M is the open dense subvariety of the monoid
M? defined in Section 2.1 (we refer to that same section for the rest of the notation).
Moreover, to account for the D in the singularity type, we have to impose the
condition that the abelianization of ¢ yields the element (Ox(D), s).

This suggests that multiplicative Higgs bundles could indeed be pairs of the
type considered by Mundet i Riera, assuming that the monoids M* have natural
Kahler structures admitting moment maps for the action of K. To the best of our
knowledge, Kahler structures and moment maps on these kind of monoids is a
problem which is yet to be studied. Thus, we suggest the following.

Problem 2. Study the Kihler structures on the monoids M?, if they exist, and the
associated moment maps for the action of K on them, induced by the natural action of G.

THE DE RHAM SIDE

One of the most important features of the theory of (additive) Higgs bundles is
the nonabelian Hodge correspondence; this is a compendium of results of Corlette,
Donaldson, Hitchin, Simpson, and others, [ , , , ] which
gives a natural correspondence between isomorphism classes of polystable G-
Higgs bundles over some Kéhler manifold and conjugation classes of reductive
representations of the fundamental group of the Kdhler manifold into the group
G. Itis common in the literature of the topic, following the analogy with the Betti,
de Rham and Dolbeault cohomology theories, to refer to the moduli space of Higgs
bundles as the Dolbeault moduli space, while the moduli space of flat connections is
the de Rham moduli space and the moduli space of representations is the Betti moduli
space. The nonabelian Hodge correspondence can be understood as the fact that
these three moduli spaces are diffeomorphic (in fact, real-analytically isomorphic).
Although the equivalence between the de Rham and the Betti moduli spaces is
complex-analytic, the equivalence between the de Rham and the Dolbeault spaces
is not. This fact is deeply intertwined with the hyper-Kdhler structure of the
Hitchin moduli space. Indeed, if one considers the three complex structures I,
J and K, the structure I can be regarded as the natural complex structure of the
Dolbeault moduli space, while | and K can be understood as coming from the
complex structure of the Betti moduli space. This is also closely related to the
twistor space description introduced in Deligne’s letters to Simpson. Moreover,
as we have mentioned previously in this document, under the nonabelian Hodge
correspondence Higgs bundles for symmetric pairs associated to an involution
0 € Aut(G) are matched with representations of the fundamental group factoring
through the real form GRr of G associated to 0.

As we explained in Section 3.3, when X is an elliptic curve, the moduli space
of singular monopoles on S! x X of fixed type is also a hyper-Kéahler manifold. Of
the three complex structures Iy, Ix and I, composing the hyper-Kéhler structure,
the first structure I; is well understood to arise from mini-holomorphic bundles
(or equivalently, from mulitplicative Higgs bundles), but it is not clear if the other
two structures are natural complex structures corresponding to a moduli space
of well understood geometric structures. A twistor description in this case is also
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not known (although we refer the reader to the paper of Elliott—Pestun [ ] for
the twistor description of a very similar problem).

Problem 3. Study the twistor space associated to the moduli space of singular monopoles
on St x X, for X an elliptic curve, and construct a "de Rham moduli space” parametrizing
"well understood” geometric structures with complex structure given by Iy or, equiva-
lently, by 1, or any C-linear combination of I and 1.

Moreover, under such description of a "de Rham side" of the moduli space
of monopoles, multiplicative (G, 6)-Higgs bundles should correspond to objects
associated to the real form GR associated to 0. In this direction, Jacques Hurtubise
has suggested (in analogy with the analogous problem in the theory of Higgs
bundles, and understanding that both theories arise from dimensional reductions
of the self-dual Yang-Mills equations in R*) that, if (V, @) is a singular monopole,
one should consider the complex valued connections V, +1® and Vy, —iVy. To this
respect, we just make the following comment. If we recall from the description of
fixed monopoles (V, @) under the involution ¢ given in Section 3.4, over the fixed
surfaces {1} x X and {-1} X X, the components V, and V of a fixed monopole

reduce to some 9 and 92r, while the components Vi and @ reduce to mgo and

m%‘. It is now clear then that, when we have those reductions, the operators

Vi +1® and Vy — iV, take values in the Lie algebra of the real forms g?R and gg
associated to 0g and 0, respectively.
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